when a+b+c=9 and a2+b2+c2= -35 then find a3+b3+c3-3abc
Answers
Answered by
12
- we need to find the value of a³ + b³ + c³ - 3abc
- a² + b² + c² = -35
- a + b + c = 9
we know that:-
⚘ a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² - ab - bc - ca)
So,
- Value of a³ + b³ + c³ - 3abc :-
- a² + b² + c² = -35 .....1)
- a + b + c = 9 ....2)
↛ a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² - ab - bc - ca) ....3)
- we know that,
↛ (a + b+ c)² = a² + b² + c² + 2ab + 2bc + 2ca
↛ (a + b+ c)² -( a² + b² + c² ) = 2[ab + bc + ca]
↛ (a + b+ c)² -( a² + b² + c² ) /2 = (ab + bc + ca)
↛ 9² -(-35)/2 = (ab + bc + ca)
↛ 81 + 35/2 = (ab + bc + ca)
↛ 116/2 = (ab + bc + ca)
↛ 58 = (ab + bc + ca) ......4)
- Putting values of (a + b + c) , (a² + b² + c²) , (ab +bc + ca) in 3)
→ a³ + b³ + c³ - 3abc = (a + b + c) (a² + b² + c² - ab - bc - ca)
↛ a³ + b³ + c³ - 3abc = 9 × [-35 - (58)]
↛ a³ + b³ + c³ - 3abc = 9 × [ - 93 ]
↛ a³ + b³ + c³ - 3abc = -837
Hence,
- Value of a³ + b³ + c³ - 3abc is - 837
━━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions