Math, asked by lnaga5048, 9 months ago

When an electron makes a transition from
(n + 1) state to nth state, the frequency of
emitted radiations is related to n according
to (n >> 1):​

Answers

Answered by lovedeep090210
1

Answer:

ududhrhrhduehye6464634646636egxbdg

Step-by-step explanation:

uu36e6d6hehdhx7ruruhdbddhjdakjrjdhxhdhndmhshdhdhhdhdbdhsvgdgdgsgdggsgdhdhdgdhhdhdhd

Answered by Anonymous
65

SOLUTION :-

 \tt \dfrac{1}{λ}  = RZ ^{2} ( \dfrac{1}{n  \dfrac{2}{1} }  - \dfrac{1}{n  \dfrac{2}{2} }), \: where \: n{1}  = n,n2 = n + 1

 \tt \dfrac{1}{λ}  = RZ ^{2} ( \dfrac{1}{n ^{2} }  -  \dfrac{1}{(n + 1) ^{2} })

→ \tt \dfrac{1}{λ}  =  ( \dfrac{2n + 1}{n ^{2}(n + 1)^{2} })  RZ ^{2}

</p><p>  \tt Since, n&gt;&gt;1;</p><p></p><p>

 \tt Therefore, 2n+1≈2n;</p><p></p><p>

 \tt and (n+1)2≈n2

★   \tt  \dfrac{1}{λ}  = RZ ^{2} ( \dfrac{2n}{n^{2}  .n ^{2} })

→ \tt  \dfrac{v}{c}  =  \dfrac{2RZ ^{2} }{ {n}^{3} }  \: or \: v \:  =  \dfrac{2cRZ ^{2} }{ {n}^{3} }

→ \tt  answer  =  \dfrac{2cRZ ^{2} }{ {n}^{3} }

Similar questions