Math, asked by loveojha3689, 1 year ago

When f(x) = x³ + 3x² – kx + 4 is divided by (x – 2), the remainder is k.i) Find the value of k.ii) Check (x – 1) is a factor of f(x).

Answers

Answered by hukam0685
1
➡️Answer:

k= 12

(x-1) is not a factor of f(x)

➡️Solution:

i) Find the value of k:

(x - 2) \: is \: a \: factor \: of \: {x}^{3} + 3 {x}^{2} - kx + 4 \\
than it divides completely,i. e. Remainder will be zero

x - 2) {x}^{3} + 3 {x}^{2} - kx + 4( {x}^{2} + 5x + 10 - k \\ \: \: \: \: \: \: \: \: \: \: \: \: {x}^{3} - 2 {x}^{2} \\ - - - - - - - - change \: sign\\ \: \: \: \: \: \: \: \: \: 5 {x}^{2} - kx \\ \: \: \: \: \: \: \: \: \: \: \: 5 {x}^{2} - 10x \\ - - - - - - - - - - \\ \: \: \: \: \: \: \: \: (10 - k)x + 4 \\ \: \: \: \: \: \: \: \: \: (10 - k)x - 20 + 2k \\ \: \: \: \: \: \: \: \: - - - - - - - - \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 24 - 2k \\

So

24 - 2k = 0 \\ \\ 2k = 24 \\ \\ k = 12 \\

Now the polynomial is

 f(x) = {x}^{3} + 3 {x}^{2} - 12x + 4 \\

2) If (x-1) is a factor of f(x) ,so on putting x=1, it becomes zero

f(1) = {(1)}^{3} + 3( {1)}^{2} - 12(1) + 4 \\ \\ = 1 + 3 - 12 + 4 \\ \\ f(1)= - 4 \\ \\
No, (x-1) is not a factor of f(x)

Hope it helps you.
Answered by MaheswariS
0

Answer:


Step-by-step explanation:

Concept:

Factor theorem:

(x-a) is a factor of f(x) if and only if f(a)=0


Remainder theorem;

when f(x) is divided by (x-a), the remainder is f(a)



1. f(x) = x³ + 3x² – kx + 4


The remainder when f(x) is divided by (x-2) is k


By remainder theorem,


f(2)=k


(2)³ + 3(2)² – k(2) + 4 = k


8+12-2k +4 = k


24 - 2k= k


24 = 3k


k=8


2.. f(x) = x³ + 3x² – kx + 4

put x=1,


f(1) = (1)³ + 3(1)² – 8(1) + 4

f(1) = 1+3-8+4 =0


since f(1)=0, by factor theorem

(x-1) is a factor of f(x)


Similar questions