Math, asked by NainaMehra, 1 year ago

When first term ( a ) is 5 and their common difference is - 1 / 2 then find the sum of 16th term of an AP.

Answers

Answered by Anonymous
12

\underline{\underline{\large{ \mathfrak{Solution : }}}}



\textsf{Given : } \\ \\<br /><br />\mathsf{\implies First \: term (a) \: = \: 5 } \\ \\<br /><br />\mathsf{\implies Common \: difference (d) \: = \: \dfrac{-1 \: }{\: 2 }}  \\  \\  \mathsf{ \implies No. \: of \: terms \:  =  \: 16 }



\underline{\mathsf{To \:  Find \:      \rightarrow \:  Sum  \: of  \: 16 \:  terms. }}



<br />\textsf{Using Formula : } \\ \\<br /><br />\boxed{\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}[2a \: + \: (n \: - \: 1)d ]}}




\underline{\textsf{Now,}} \\ \\<br /><br />\mathsf{\implies S_{16} \: = \: \dfrac{16}{2}[2 \: \times \: 5 \: + \: ( 16 \:  - \: 1)\left(\dfrac{-1}{2}\right)]}<br />



 \mathsf{ \implies S_{16} \:  =  \: 8  \left\{10 \:  +  \: 15 \left( \dfrac{ - 1}{2} \right) \right\} } \\  \\  \mathsf{ \implies S_{16} \:  =  \: 8 \left\{ 10 \:  -  \:  \dfrac{15}{2}\right \}} \\  \\  \mathsf{ \implies S_{16} \:  =  \: 8 \left \{ \dfrac{20 \:  -  \: 15}{2} \right \}} \\  \\  \mathsf{ \implies S_{16} \:  =  \: 8 \:  \times  \:  \dfrac{5}{2}}


\mathsf{\implies S_{16} \: = \: 4 \: \times \: 5 }\\ \\<br /><br />\mathsf{\therefore \quad S_{16} \: = \: 20}



\boxed{\mathsf{Hence, \: sum \: of \: 16 \: terms \: of \: this \: A.P \: is \: 20.}}
Answered by Anonymous
5
According \: to \: question, \\ First \: term(a) = 5 \\ Common \: difference(d) = \frac{ - 1}{2} \\ \\ Sum \: of \: n \: terms \: of \: AP \\ = \frac{n}{2} \times[ 2a + (n - 1)d ]\\ \\ sum \: of \: 16 \: terms \: of \: AP \: \\ = \frac{16}{2} \times[ 2 \times 5 + (16 - 1)( \frac{ - 1}{2} ) ]\\ = 8 \times [10 - 7.5 ] \\ = 8 \times 2.5 \\ = 20 \\ \\ hope \: it \: may \: help \: u
Similar questions