when given that . prove:
Answers
Solution:
It is given that
Squaring both sides,
Hence, it is proved.
It is given that a \: sinB + b \: sinB = c \:asinB+bsinB=c
a \: sinB + b \: sinB = c \: (given)asinB+bsinB=c(given)
Squaring both sides,
So, \: {(a \: sinB + b \: sinB) }^{2} = {c}^{2} .So,(asinB+bsinB)
2
=c
2
.
= > {a}^{2} {sin}^{2} B + {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}=>a
2
sin
2
B+b
2
sin
2
B+2absinBcosB=c
2
= > {a}^{2} (1 - {cos}^{2} B) + {b}^{2} (1 - {sin}^{2} B) + 2ab \: sinB \: cosB = {c}^{2}=>a
2
(1−cos
2
B)+b
2
(1−sin
2
B)+2absinBcosB=c
2
= > {a}^{2} - {a}^{2} {cos}^{2} + {b}^{2}\: - {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}=>a
2
−a
2
cos
2
+b
2
−b
2
sin
2
B+2absinBcosB=c
2
= > {a}^{2} {cos}^{2} B - 2ab \: sinB \: cosB \: + {b}^{2} {sin}^{2} B= {a}^{2} + {b}^{2} - {c}^{2}. \:=>a
2
cos
2
B−2absinBcosB+b
2
sin
2
B=a
2
+b
2
−c
2
.
= > ({a \: cosB - b \: sinB})^{2} = {a}^{2} + {b}^{2} - {c}^{2}=>(acosB−bsinB)
2
=a
2
+b
2
−c
2
= > ({a \: cosB - b \: sinB}) = \sqrt{ {a}^{2} + {b}^{2} - {c}^{2}.}=>(acosB−bsinB)=
a
2
+b
2
−c
2
.