when sin990/cos540+sin780/cos750+sin390/cos780=k(tan405-tan360) is defined,then k=
Answers
Step-by-step explanation:
use methods such as sin(A+B). or
Given : sin990/cos540+sin780/cos750+sin390/cos780=k(tan405-tan360)
To find : Value of k
Solution:
sin 990° = Sin ( 3 * 360° - 90°) = - Sin 90° = - 1
cos 540° = Cos (360° + 180° ) = Cos 180° = -1
=> sin990°/cos540° = 1
Sin 780° = Sin (2 * 360° + 60°) = Sin 60° = √3 / 2
Cos 750° = Cos (2 * 360° + 30°) = Cos 30° = √3/ 2
=> Sin 780° / Cos 750° = 1
Sin 390° = Sin (360° + 30°) = Sin 30° = 1/2
Cos 780° = Cos (2 * 360° + 60°) = Cos 60° = 1/ 2
Sin 390° / Cos 780° = 1
tan 405° = tan ( 360°+ 45°) = tan 45° = 1
tan 360° = 0
=> 1 + 1 + 1 = k ( 1 - 0)
=> 3 = k
Value of k = 3
Learn More:
https://brainly.in/question/22239477
show that , tan (315°) cot(-405°) + cot (495°) tan (-585°)/sin - Brainly.in
brainly.in/question/10973642
If A lies between 270° and 370° and sin A = -7/25 , then 1) sin2A ...
brainly.in/question/10022255