When two forces of magnitude P and Q are perpendicular to each other, their resultant is of magnitude R. When they are at an angle of 180° to each other their resultant is of magnitude R/√2. Find the ratio of P and Q.
Answers
Answer ⇒ P/Q = 2 + √3
Explanation ⇒ Given,
P² + Q² + 2PQCos90 = R²
∴ P² + Q² + 0 = R²
∴ R² = P² + Q²
R² = (P + Q)² - 2PQ
Now, When θ = 180,
P² + Q² + 2PQCos180 = R²/2
∴ P² + Q² - 2PQ = R²/2
∴ R² - 2PQ = R²/2
∴ 2PQ = R²/2
∴ PQ = R²/4
Now,
R² = (P + Q)² - 2(R²)/4
∴ R² = (P + Q)² - R²/2
∴ (P + Q)² = 3R²/2
∴ P + Q = √3/√2 × R
Also, P - Q = R/√2
Solving it, we will get,
2P = R(√3 + 1)/√2
∴ P = R(√3 + 1)/2√2
Now, 2Q = (√3 - 1)/√2
∴ Q = (√3 - 1)/2√2
∴ P/Q = (√3 + 1)/(√3 - 1)
∴ P/Q = (√3 + 1)²/2
∴ P/Q = (4 + 2√3)/2
∴ P/Q = 2 + √3
Hope it helps.
Answer:
P² + Q² + 2PQCos90 = R²
∴ P² + Q² + 0 = R²
∴ R² = P² + Q²
R² = (P + Q)² - 2PQ
Now, When θ = 180,
P² + Q² + 2PQCos180 = R²/2
∴ P² + Q² - 2PQ = R²/2
∴ R² - 2PQ = R²/2
∴ 2PQ = R²/2
∴ PQ = R²/4
Now,
R² = (P + Q)² - 2(R²)/4
∴ R² = (P + Q)² - R²/2
∴ (P + Q)² = 3R²/2
∴ P + Q = √3/√2 × R
Also, P - Q = R/√2
Solving it, we will get,
2P = R(√3 + 1)/√2
∴ P = R(√3 + 1)/2√2
Now, 2Q = (√3 - 1)/√2
∴ Q = (√3 - 1)/2√2
∴ P/Q = (√3 + 1)/(√3 - 1)
∴ P/Q = (√3 + 1)²/2
∴ P/Q = (4 + 2√3)/2
∴ P/Q = 2 + √3