Math, asked by riasharma6644, 1 year ago

when we Simplify (√5+√2)² we get the solution (√5)² + 2√5√2+ (√2)²= 5+2√10+2=7+2√10 how do we get 10?

Answers

Answered by hukam0685
0

The solution of \bf ( { \sqrt{5}  +  \sqrt{2}) }^{2}  = 7 + 2 \sqrt{10}  \\

Step-by-step explanation:

Given:

  • ( { \sqrt{5} +  \sqrt{2} ) }^{2}  \\

To find:

  • Find the simplification of above written term.

Solution:

Concept /Formula to be used:

Identity to be used:

  • ( {a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}  \\
  •  \sqrt{x}  \times \sqrt{y}  =  \sqrt{x y} \\

Step 1:

Compare the given terms with the identity.

On comparison of both, we get that

a =  \sqrt{5}  \\ b =  \sqrt{2}  \\

Apply the values in the identity.

So,

( { \sqrt{5} +  \sqrt{2} ) }^{2}  = ( { \sqrt{5} )}^{2}  + 2 \sqrt{5}  \sqrt{2}   + ( { \sqrt{2} )}^{2} \\

or

( { \sqrt{5} +  \sqrt{2} ) }^{2} = 5 + 2 \sqrt{5}  \sqrt{2}  + 2 \\

or

( { \sqrt{5} +  \sqrt{2} ) }^{2} = 7 + 2 \sqrt{5}  \sqrt{2}  \\

Step 2:

Simplify the second term.

( { \sqrt{5} +  \sqrt{2} ) }^{2} = 7 + 2\red{ \sqrt{5}  \sqrt{2}  }\\

or

( { \sqrt{5} +  \sqrt{2} ) }^{2} = 7 + 2 \sqrt{\red{5 \times 2}}  \\

or

( { \sqrt{5} +  \sqrt{2} ) }^{2} = 7 + 2 \sqrt{10}  \\

Thus,

The simplification of expression is

 \bf \: ( { \sqrt{5} +  \sqrt{2} ) }^{2} = 7 + 2 \sqrt{10}  \\

By this way we get 10 under square root.

Learn more:

1) What is answer 3 root 2 whole square

https://brainly.in/question/17436083

2) On adding 2√3 and 3√2 we get:

a) 5√5

b) 5(√3+√2)

c) 2√3+ 3√2

d) none of the above

https://brainly.in/question/18360370

#SPJ3

Similar questions