Math, asked by proloyroy, 11 months ago

which is greter among √12-√11 and √11_√10​

Answers

Answered by divyamyindia271
0

Answer:

 \sqrt{12}  -  \sqrt{11}  \times  \frac{ \sqrt{12} +  \sqrt{11}  }{ \sqrt{12}   + \sqrt{11} }  \\  \frac{ \sqrt{ {12}^{2}  }  -  \sqrt{ {11}^{2} } }{ \sqrt{12}  +  \sqrt{11} }  \\  \frac{1}{ \sqrt{12} +  \sqrt{11}  }  =  =  =  =  =  =  = 1 \\

 \sqrt{11}  -  \sqrt{10}  \\   \sqrt{11}  -  \sqrt{10}  \times  \frac{ \sqrt{11}  +  \sqrt{10} }{ \sqrt{11}  +  \sqrt{10} }  \\  \frac{ { \sqrt{11} }^{2}  -  { \sqrt{10} }^{2} }{ \sqrt{11}  +  \sqrt{10} }  \\   \frac{1}{ \sqrt{11}  +  \sqrt{10} }  =  =  =  =  =  = 2

on comparing eq 1 and 2

 \frac{1}{ \sqrt{11} +  \sqrt{10}  } \: is \: greater \: than \frac{1}{ \sqrt{11}  +  \sqrt{12} }

so

 \sqrt{11}  -  \sqrt{10}  \: is \: greater \: than \:  \sqrt{12}  -  \sqrt{11}

hope it helps.......

Similar questions