Math, asked by Ajinas2792, 4 months ago

Which is the distance between the point with the coordinates (-2, 3) and the line with the equation 6x-y=-3 HURRY

Answers

Answered by mathdude500
1

Given Question :-

  • What is the distance between the point with the coordinates (-2, 3) and the line with the equation 6x - y = - 3.

Answer

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a \: line \: 6x - y =  - 3} \\ &\sf{a \: point \: (-2, 3)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find  \begin{cases} &\sf{perpendicular \: distance}  \end{cases}\end{gathered}\end{gathered}

Concept Used :

Let us consider a line ax + by + c = 0 and a point (p, q), then shortest or perpendicular distance is given by

 \boxed{ \red{ \bf \: d \:  =  \sf \: \dfrac{ |ap + bq + c| }{ \sqrt{ {a}^{2} +  {b}^{2}  } } }}

\large\underline\purple{\bold{Solution :-  }}

Given

A line 6x - y + 3 = 0 and a point (-2, 3).

Let 'd' be the shortest or perpendicular distance between 6x - y + 3 = 0 and (-2, 3)

Then,

 \bf \: d \:  =  \sf \: \dfrac{ |6( - 2) - 3 + 3| }{ \sqrt{ {6}^{2}  +  {( - 1)}^{2} } }

 :  \implies \bf \: d \:  =  \sf \: \dfrac{ | - 12  -   \cancel3  \:  +  \cancel3| }{ \sqrt{36 + 1} }

 :  \implies \bf \: d \:  =  \sf \: \dfrac{ | - 12| }{ \sqrt{37} }

 :  \implies \bf \: d \:  =  \sf \: \dfrac{  12 }{ \sqrt{37} }

 :  \implies  \large\boxed{ \pink{ \bf \: d \:  =  \rm \: \dfrac{  12}{ \sqrt{37} \: }units \:  }}

Similar questions