which Newton's low in followed fod working of rocket? Explain the principle behind flying of rocket in your own words.
Answers
Answer:
The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses is explained by the same physical principle: Newton's third law of motion. Matter is forcefully ejected from a system, producing an equal and opposite reaction on what remains. Another common example is the recoil of a gun
Explanation:
Rockets range in size from fireworks so small that ordinary people use them to immense Saturn Vs that once propelled massive payloads toward the Moon. The propulsion of The matterckets, jet engines, deflating balloons, and even squids and octopuses are explained by the same physical principle: Newton’s third law of motion. Matter is forcefully ejected from a system, producing an equal and opposite reaction on what remains. Another common example is the recoil of a gun. The gun exerts a force on a bullet to accelerate it and consequently experiences an equal and opposite force, causing the gun’s recoil or kick.
shows a rocket accelerating straight up. In part (a), the rocket has a mass m and a velocity v relative to Earth, and hence a momentum mv. In part (b), a time Δt has elapsed in which the rocket has ejected a mass Δm of hot gas at a velocity ve relative to the rocket. The remainder of the mass (m−m) now has a greater velocity (v+Δv). The momentum of the entire system (rocket plus expelled gas) has decreased because the force of gravity has acted for a time Δt, producing a negative impulse Δp=−mgΔt. (Remember that impulse is the net external force on a system multiplied by the time it acts, and it equals the change in momentum of the system. ) So the center of mass of the system is in free fall but, by rapidly expelling mass, part of the system can accelerate upward. It is a commonly held misconception that the rocket exhaust pushes on the ground. If we consider thrust; that is, the force exerted on the rocket by the exhaust gases, then a rocket’s thrust is greater in outer space than in the atmosphere or on the launch pad. Gases are easier to expel into a vacuum.