Math, asked by muralibabu1321979, 4 days ago

which of the A(1,3) ,B(-3,2) ,C(3,4) and D(4,2) is farthest to the origin​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{A(1,3), B(-3,2), C(3,4), D(4,2)}

\underline{\textbf{To find:}}

\textsf{which of the given points is farthest to the origin}

\underline{\textbf{Solution:}}

\underline{\textsf{Formula used:}}

\mathsf{The\;distance\;between\;the\;points\;(x_1,y_1)\;and\;(x_2,y_2)\;is}

\boxed{\mathsf{d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}}

\mathsf{Here,;O\;is\;(0,0)}

\mathsf{OA=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{OA=\sqrt{(0-1)^2+(0-3)^2}}

\mathsf{OA=\sqrt{1+9}}

\mathsf{OA=\sqrt{10}}

\mathsf{OB=\sqrt{(0+3)^2+(0-2)^2}}

\mathsf{OB=\sqrt{9+4}}

\mathsf{OB=\sqrt{13}}

\mathsf{OC=\sqrt{(0-3)^2+(0-4)^2}}

\mathsf{OC=\sqrt{9+16}}

\mathsf{OC=\sqrt{25}}

\mathsf{OD=\sqrt{(0-4)^2+(0-2)^2}}

\mathsf{OD=\sqrt{16+4}}

\mathsf{OD=\sqrt{20}}

\implies\mathsf{\sqrt{10}<\sqrt{13}<\sqrt{20}<\sqrt{25}}

\implies\mathsf{OA<OB<OD<OC}

\therefore\textsf{The point C(3,4) is fathest to the origin}

Answered by sharonr
0

Answer:

The farthest from origin is point D

Step-by-step explanation:

Given:

A(1,3) ,B(-3,2) ,C(3,4), D(4,2)

we need to find the farthest distance from the origin

So by applying the distance formula we get

OA=\sqrt{(1)^2+(3)^2}\\\\OA=\sqrt{10}

OB=\sqrt{(-3)^2+(2)^2}\\\\OB=\sqrt{13}

OC=\sqrt{(3)^2+(4)^2} \\\\OC=\sqrt{25}

OD=\sqrt{(4)^2+(2)^2} \\\\OD=\sqrt{20}

So farthest is point D

Similar questions