Which of the fallowing is dispersed by water
Answers
Answer:
dispersed by water are contained in light and buoyant fruit, giving them the ability to float. Coconuts are well known for their ability to float on water to reach land where they can germinate. Similarly, willow and silver birches produce lightweight fruit that can float on water.
Answer:
Seed dispersal distances by wind are investigated in many studies, either by experimental research or by (mechanistic) modelling (for example, Greene and Johnson 1989; Nathan and others 2002; Soons and Heil 2002; Tackenberg 2003; Soons and others 2004; Nathan and others 2011). However, dispersal distances by water are not well known and hydrochory studies focus mostly on seed transport through rivers. To our knowledge, only two studies (Beltman and van den Broek 2006; Soomers and others 2010) have experimentally determined hydrochorous dispersal ranges in drainage ditches. Moreover, to our knowledge, spatially explicit process-based models predicting seed dispersal via water have not yet been developed. We found only three studies that have attempted to model hydrochorous dispersal (Campbell and others 2002; Levine 2003; Groves and others 2009). None of the models, however, is spatially and temporally explicit or is applicable to standing or slow-flowing waters such as ditches, in which hydrochorous dispersal is driven by wind shear stress (Soomers and others 2010; Sarneel and others, in press).
Seed dispersal distances by wind are investigated in many studies, either by experimental research or by (mechanistic) modelling (for example, Greene and Johnson 1989; Nathan and others 2002; Soons and Heil 2002; Tackenberg 2003; Soons and others 2004; Nathan and others 2011). However, dispersal distances by water are not well known and hydrochory studies focus mostly on seed transport through rivers. To our knowledge, only two studies (Beltman and van den Broek 2006; Soomers and others 2010) have experimentally determined hydrochorous dispersal ranges in drainage ditches. Moreover, to our knowledge, spatially explicit process-based models predicting seed dispersal via water have not yet been developed. We found only three studies that have attempted to model hydrochorous dispersal (Campbell and others 2002; Levine 2003; Groves and others 2009). None of the models, however, is spatially and temporally explicit or is applicable to standing or slow-flowing waters such as ditches, in which hydrochorous dispersal is driven by wind shear stress (Soomers and others 2010; Sarneel and others, in press).Although it is known that declines in availability of dispersal vectors in landscapes affect species loss, and that this effect is species- and vector-specific (Ozinga and others 2009), it remains unclear what portion of species’ dispersal kernels is determined by different vectors, and how this changes between landscapes and species with differing traits. Seed traits such as terminal velocity (that is, seed falling velocity in still air) or buoyancy are often used to assess whether species are potentially capable of long-distance dispersal via wind or water (Ozinga and others 2009; Thomson and others 2010).
Explanation: