Math, asked by rawatishita35, 1 month ago

Which of the following are APs ? If they form an AP, find the common difference d and write three more terms. (i) 2, 4, 8, 16, ……. (ii) 2, 52 , 3, 72 , ……. (iii) -1.2, -3.2, -5.2, -7.2, …… (iv) -10, -6, -2,2, ….. (v) 3, 3 + 2–√, 3 + 22–√, 3 + 32–√, ….. (vi) 0.2, 0.22, 0.222, 0.2222, …… (vii) 0, -4, -8, -12, ….. (viii) −12 , −12 , −12 , −12 , ……. (ix) 1, 3, 9, 27, ……. (x) a, 2a, 3a, 4a, ……. (xi) a, a2, a3, a4, ……. (xii) 2–√, 8–√, 18−−√, 32−−√, ….. (xiii) 3–√, 6–√, 9–√, 12−−√, ….. (xiv) 12, 32, 52, 72, …… (xv) 12, 52, 72, 73, ​

Answers

Answered by ishusri410
6

(i) 2,4,8,16 …

Here,

a2 - a1 = 4 - 2 = 2

a3 - a2 = 8 - 4 = 4

a4 - a3 = 16 - 8 = 8

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(ii) 2, 5/2, 3, 7/2 ....

Here,

a2 - a1 = 5/2 - 2 = 1/2

a3 - a2 = 3 - 5/2 = 1/2

a4 - a3 = 7/2 - 3 = 1/2

⇒ an+1 - an is same every time.

Therefore, d = 1/2 and the given numbers are in A.P.

Three more terms are

a5 = 7/2 + 1/2 = 4

a6 = 4 + 1/2 = 9/2

a7 = 9/2 + 1/2 = 5

(iii) -1.2, - 3.2, -5.2, -7.2 …

Here,

a2 - a1 = ( -3.2) - ( -1.2) = -2

a3 - a2 = ( -5.2) - ( -3.2) = -2

a4 - a3 = ( -7.2) - ( -5.2) = -2

⇒ an+1 - an is same every time.

Therefore, d = -2 and the given numbers are in A.P.

Three more terms are

a5 = - 7.2 - 2 = - 9.2

a6 = - 9.2 - 2 = - 11.2

a7 = - 11.2 - 2 = - 13.2

(iv) -10, - 6, - 2, 2 …

Here,

a2 - a1 = (-6) - (-10) = 4

a3 - a2 = (-2) - (-6) = 4

a4 - a3 = (2) - (-2) = 4

⇒ an+1 - an is same every time.

Therefore, d = 4 and the given numbers are in A.P.

Three more terms are

a5 = 2 + 4 = 6

a6 = 6 + 4 = 10

a7 = 10 + 4 = 14

(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2

Here,

a2 - a1 = 3 + √2 - 3 = √2

a3 - a2 = (3 + 2√2) - (3 + √2) = √2

a4 - a3 = (3 + 3√2) - (3 + 2√2) = √2

⇒ an+1 - an is same every time.

Therefore, d = √2 and the given numbers are in A.P.

Three more terms are

a5 = (3 + √2) + √2 = 3 + 4√2

a6 = (3 + 4√2) + √2 = 3 + 5√2

a7 = (3 + 5√2) + √2 = 3 + 6√2

(vi) 0.2, 0.22, 0.222, 0.2222 ….

Here,

a2 - a1 = 0.22 - 0.2 = 0.02

a3 - a2 = 0.222 - 0.22 = 0.002

a4 - a3 = 0.2222 - 0.222 = 0.0002

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(vii) 0, -4, -8, -12 …

Here,

a2 - a1 = (-4) - 0 = -4

a3 - a2 = (-8) - (-4) = -4

a4 - a3 = (-12) - (-8) = -4

⇒ an+1 - an is same every time.

Therefore, d = -4 and the given numbers are in A.P.

Three more terms are

a5 = -12 - 4 = -16

a6 = -16 - 4 = -20

a7 = -20 - 4 = -24

(viii) -1/2, -1/2, -1/2, -1/2 ....

Here,

a2 - a1 = (-1/2) - (-1/2) = 0

a3 - a2 = (-1/2) - (-1/2) = 0

a4 - a3 = (-1/2) - (-1/2) = 0

⇒ an+1 - an is same every time.

Therefore, d = 0 and the given numbers are in A.P.

Three more terms are

a5 = (-1/2) - 0 = -1/2

a6 = (-1/2) - 0 = -1/2

a7 = (-1/2) - 0 = -1/2

(ix) 1, 3, 9, 27 …

Here,

a2 - a1 = 3 - 1 = 2

a3 - a2 = 9 - 3 = 6

a4 - a3 = 27 - 9 = 18

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(x) a, 2a, 3a, 4a …

Here,

a2 - a1 = 2a - a = a

a3 - a2 = 3a - 2a = a

a4 - a3 = 4a - 3a = a

⇒ an+1 - an is same every time.

Therefore, d = a and the given numbers are in A.P.

Three more terms are

a5 = 4a + a = 5a

a6 = 5a + a = 6a

a7 = 6a + a = 7a

(xi) a, a2, a3, a4 …

Here,

a2 - a1 = a2 - a = (a - 1)

a3 - a2 = a3 - a2 = a2 (a - 1)

a4 - a3 = a4 - a3 = a3(a - 1)

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(xii) √2, √8, √18, √32 ...

Here,

a2 - a1 = √8 - √2 = 2√2 - √2 = √2

a3 - a2 = √18 - √8 = 3√2 - 2√2 = √2

a4 - a3 = 4√2 - 3√2 = √2

⇒ an+1 - an is same every time.

Therefore, d = √2 and the given numbers are in A.P.

Three more terms are

a5 = √32 + √2 = 4√2 + √2 = 5√2 = √50

a6 = 5√2 +√2 = 6√2 = √72

a7 = 6√2 + √2 = 7√2 = √98

(xiii) √3, √6, √9, √12 ...

Here,

a2 - a1 = √6 - √3 = √3 × 2 -√3 = √3(√2 - 1)

a3 - a2 = √9 - √6 = 3 - √6 = √3(√3 - √2)

a4 - a3 = √12 - √9 = 2√3 - √3 × 3 = √3(2 - √3)

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(xiv) 12, 32, 52, 72 …

Or, 1, 9, 25, 49 …..

Here,

a2 − a1 = 9 − 1 = 8

a3 − a2 = 25 − 9 = 16

a4 − a3 = 49 − 25 = 24

⇒ an+1 - an is not the same every time.

Therefore, the given numbers are forming an A.P.

(xv) 12, 52, 72, 73 …

Or 1, 25, 49, 73 …

Here,

a2 − a1 = 25 − 1 = 24

a3 − a2 = 49 − 25 = 24

a4 − a3 = 73 − 49 = 24

i.e., ak+1 − ak is same every time.

⇒ an+1 - an is same every time.

Therefore, d = 24 and the given numbers are in A.P.

Three more terms are

a5 = 73+ 24 = 97

a6 = 97 + 24 = 121

a7 = 121 + 24 = 145 .

Mark as brainliest answer .

Thank you .

Similar questions