Math, asked by priyabhardwaj6643, 8 months ago

which of the following are sides of a right triangle option is A) 4,4,8....B) 2,3 4....C) √13, 3,2.....D) √5, 3,2​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\mathsf{a)4,4,8}

\mathsf{b)2,3,4}

\mathsf{c)\sqrt{13},3,2}

\mathsf{d)\sqrt{5},3,2}

\underline{\textsf{To find:}}

\textsf{Which are sides of a right angled triangle}

\underline{\textsf{Solution:}}

\textsf{Converse of pythagoras theorem:}

\textsf{If sum of the squares of two sides of a triangle is equal to square}

\textsf{of the third side, then the angle contained by the sides is ight angle}

\mathsf{a)4^2+4^2=16+16=32{\neq}8^2}

\mathsf{b)2^2+3^2=4+9=13{\neq}4^2}

\mathsf{c)3^2+2^2=9+4=13=\sqrt{13}^2}

\mathsf{d)2^2+\sqrt{5}^2=4+5=9=3^2}

\therefore\textsf{Option (c) and (d) are sides of right angled triangles}

Answered by rohitkumargupta
5

Answer:

Step-by-step explanation:

HELLO DEAR,

Given data are A) 4,4,8.

B) 2,3,4. C)√13,3,2 D) √5,3,2.

If any traingle is right triangle wgen it follow the pythagoras theorems.

Chech it,

A) 4,4,5

5^2 = 4^2 + 4^2 its not correct.

B) 2,3,4

4^2 = 2^2 + 3^2

16 = 4 + 9

16= 13 its not true

C) √13,3,2

(√13)^2 = 3^2 + 2^2

13= 9 + 4

13= 13 so it is a right triangle.

D) √5,3,2

3^2 = (√5)^2 + 2^2

9 =5 + 4

9= 9 so its a right triangle.

Therefore option C) and D) are right triangle.

I HOPE IT HELP YOU DEAR,

THANKS.

Similar questions