Math, asked by udayyadav779, 1 year ago

Which of the following has a terminating decimal expansion? (a) 32/91 (b) 19/80 (c) 23/45 (d) 25/42

Answers

Answered by creamiepie
77
here ,


(a) \frac{32}{91}
91 = 7 × 13

(b)\frac{19}{80}
80 = 2 × 2 × 2 × 2 × 5

(c) \frac{23}{45}
45 = 3 × 3 × 5

(d) \frac{25}{42}
42 = 2 × 3 × 7

Since, 80 ends in {2}^{4}  \times  {5}^{1}

 \therefore{ \frac{19}{80}  \: is \: a \: terminating \: decimal}


Answered by hukam0685
39

Answer:

 \frac{19}{80}  \\

Step-by-step explanation:

To find whether given rational number is terminating decimal expansion or non-terminating repeating decimal expansion.

Step1:Do prime factors of numerator and denominator, if any

Step2: cancel any common factor ,if any

Step3: check that,if denominator has in the form

 {2}^{n}  {5}^{m} ; \:  \: n ,\: m > 0 \\  \\

if yes,then given number has terminating decimal expansion

otherwise not.

(a) 32/91

 \frac{2 \times 2 \times 2 \times 2 \times 2 }{7 \times 13}  \\  \\ no \: common \: factor \: to \: cancel \\  \\ denominator \: is \: not \: in \: the \: form {2}^{n}  {5}^{m}  \\  \\  \frac{32}{91}  : non - terminating \:

(b) 19/80

 \frac{19}{80}  =  \frac{19}{ {2}^{4}  \times5 }  = terminating \: decimal \\

(c) 23/45

 \frac{23}{45}  =  \frac{23}{3 \times 3 \times 5}  = non - terminating \\

(d) 25/42

 \frac{25}{42}  =  \frac{5 \times 5}{2 \times 3 \times 7}  = non - terminating \\  \\

Hope it helps you.

Similar questions