Math, asked by abhinayaccord2, 5 months ago

which of the following is correct (I) 5(y2-1)=5y2_1 (ii) 2(y_3)=2y_3 (iii) x+5)/5=x+1 (iv) (5x+1)2=25×2+10x+1​

Answers

Answered by Anonymous
1

Given:

⠀⠀⠀⠀⠀⠀⠀

The ratio of numerator and denominator of the rational number is 2:7.

If 4 is added to the numerator and 2 is subtracted from the denominator the rational number becomes 10/19.

⠀⠀⠀⠀⠀⠀⠀

To find:

⠀⠀⠀⠀⠀⠀⠀

Original number?

⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

☯ Let Numerator and Denominator of rational no. be 2x and 7x respectively.

⠀⠀⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

If 4 is added to the numerator and 2 is subtracted from the denominator the rational number becomes 10/19.

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{2x + 4}{7x - 2} = \dfrac{10}{19}\\ \\

:\implies\sf 19(2x + 4) = 10(7x - 2)\\ \\

:\implies\sf 38x + 76 = 70x - 20\\ \\

:\implies\sf 38x - 70x = - 20 - 76\\ \\

:\implies\sf - 32x = - 96\\ \\

:\implies\sf x = \cancel{ \dfrac{96}{32}}\\ \\

:\implies{\boxed{\sf{\purple{x = 3}}}}\;\bigstar\\ \\

Therefore,

⠀⠀⠀⠀⠀⠀⠀

Numerator of required rational no., 2x = 2 × 3 = 6

Denominator of required rational no., 5x = 7 × 3 = 21

⠀⠀⠀⠀⠀⠀⠀

\therefore Hence, The original number is 6/21.

Answered by BrainlyDevilX
0

\large \orange{\underline{ \orange{\underline{\bold{\purple{\overbrace{\pink{ \underbrace{ |\:\:\:\: \rm{ \mathfrak{ \red{answer}} \:\:\:\:|} }}}}}}}}}

\large \orange{\underline{ \orange{\underline{\bold{\purple{\overbrace{\pink{ \underbrace{ |\:\:\:\: \rm{ \mathfrak{ \red{ \huge{answer}}} \:\:\:\:|} }}}}}}}}} \\ \\

 \rm{ \bold{ \green{\underline{ \pink{ \underline{ \red{ \underbrace{ \blue{ \:\:\:\:\:\: \dfrac{6}{21}  \:\:\:\:\:\: }}}}}}}}} \\ \\ \\

\rm{ \green{ \underline{ \red{ \overbrace{ \pink{ \mathfrak{ \:\:\:explanation\:in\:details \:\: \downarrow}}}}}}} \\ \\

\large\underline\bold{ \mathcal{ \pink{GIVEN:}}} \\

\dashrightarrow ratio \: of\: numerator\:and\: denominator\: is\: 2:7 \\ \dashrightarrow If \:4 \:is\: added\: to\: the \: \\ numerator\: and \:2 \:is \:subtracted\: \\  from \:the\: denominator\: the \:rational\: number \:becomes \: 10/19.

\large\underline\bold{\red{ \mathcal{TO\: Find:}}} \\

\rm{\dashrightarrow \underline{ \overline{ \red{original \:number . }}} } \\ \\

\large\underline\bold{ \underline{ \mathfrak{ \purple{Solving:}}}}\\ \\

\bf{ \purple{  \underbrace{\red{let\:numberaontor\:and\: denominator\:be \: 2x\:and\:7 x .}}}}

  • If 4 is added to the numerator and 2 is subtracted from the denominator the rational number becomes 10/19.

:\implies\sf \dfrac{2x + 4}{7x - 2} = \dfrac{10}{19}\\ \\ \\ \\ :\implies\sf 19(2x + 4) = 10(7x - 2)\\ \\:\implies\sf 38x + 76 = 70x - 20\\ \\:\implies\sf - 32x = - 96\\ \\:\implies\sf x = \cancel{ \dfrac{96}{32}}\\ \\ :\implies  \overbrace{ \underbrace{ \overline{ \underline{ \purple{x= 3}}}} } \\ \\ \underline{ \dashrightarrow numerator= 2x= 2\times 3= 6 } \\ \\ \underline{denominator\:= 7x= 7\times 3 = 21 }\\ \\: \implies  \dfrac{numerator}{denominator} = \dfrac{6}{21}

\rm{ \bold{\red{ \underline{ \pink{ \underline{ \overline{ \purple{ \overline{ \green{ \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}}}}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

Similar questions