Math, asked by StrongGirl, 8 months ago

which of the following statements is/are TRUE?

Attachments:

Answers

Answered by amansharma264
4

ANSWER.

=> option [ B ] and [ C ] is correct answer.

EXPLANATION.

 \sf  :  \implies \: x \:  , y \: and \: z \: be \: positive \: real \: number \\  \\   \sf  :  \implies  \: assume \: x \: , \: y \: and \: z \: are \: the \: length \: of \: sides \: of \: triangle \\ \sf  :  \implies \: opposite \: to \: its \: angle \: x \: , \: y \: and \: z \:

 \sf :  \implies \: equation \: are \:  =  \tan( \dfrac{x}{z} ) +  \tan( \dfrac{y}{z} )  =  \dfrac{2y}{x + y + z}

\sf :  \implies \: formula \: of \:  \tan( \dfrac{a}{z} )  =  \sqrt{ \dfrac{(s - b)(s - c)}{s(s - a)} }  \\  \\  \\ \sf :  \implies \: formula \: of \:  \tan( \frac{c}{2} )  =  \sqrt{ \frac{(s - a)(s - b)}{s(s - c)} }  \\  \\ \sf :  \implies \: s =  \frac{a  + b + c}{2}

\sf :  \implies \:  \sqrt{ \dfrac{(s - b)(s - c)}{s(s - a)} }  \:  \: +   \:  \:  \sqrt{ \dfrac{(s - a)(s - b)}{s(s - c)} }  =  \dfrac{b}{s} \\  \\  \\  \sf :  \implies \:  \frac{ \sqrt{(s - b)} }{ \sqrt{s} } ( \frac{s - c + s - a}{ \sqrt{(s - a)(s - c)} } ) =  \frac{b}{s}  \\  \\ \sf :  \implies \: 2s \:  - (c + a) = b \\  \\ \sf :  \implies \:  \frac{ \sqrt{(s - b)} }{ \sqrt{s} }  (\frac{b}{ \sqrt{(s - a)(s - c)} } ) =  \frac{b}{s}

\sf :  \implies \:  \sqrt{s(s - b)} =  \sqrt{(s - a)(s - c)}  \\  \\  \sf :  \implies \:  {s}^{2}  - bs \:  =  {s}^{2}  - (a + c)s + ac \\  \\ \sf :  \implies \: s(a + c - b) = ac \\  \\ \sf :  \implies \: (a + c + b)(a +c - b) = 2ac \\  \\ \sf :  \implies \:  {a}^{2}   +  {c}^{2}  =  {b}^{2}

\sf :  \implies \: it \: satisfied \: the \: option \: (b) \:  \: and \:  \: (c) \\  \\  \sf :  \implies \: (b) = y = x + z \\  \\ \sf :  \implies \: (c) =  \tan( \frac{x}{z} )  =  \frac{x}{y + z}

Similar questions