Math, asked by StrongGirl, 8 months ago

which of the following statements is/are TRUE?

Attachments:

Answers

Answered by amansharma264
5

ANSWER.

Option [ A ] and [ B ] is correct answer.

EXPLANATION.

 \sf :  \implies \:  l_{1} \: and \:  l_{2} \:  \: are \:  \: straight \:  \: lines \\  \\   \sf :  \implies \:  l_{1} \:  =  \frac{x - 1}{1}  =  \frac{y}{ - 1}  =  \frac{ z - 1 }{3} \\  \\   \sf :  \implies \:  l_{2} \:  =  \frac{x - 1}{ - 3}  =  \frac{y}{ - 1}  =  \frac{z - 1}{3}

 \sf :  \implies \: intersection \: points \: are \: (1 ,0 ,1) \\  \\  \sf :  \implies \: we \: can \: find \: angle \: bisector \: in \: two \: lines \\  \\ \sf :  \implies \:  l_{1} =  d_{1} \:  =  \hat{i} -  \hat{j} + 3 \hat{k} \\  \\ \sf :  \implies \:  l_{2} \:  =  d_{2} \:  =  - 3 \hat{i} -  \hat{j} +  \hat{k} \\  \\  \sf :  \implies \: dot \: products \: of \: these \: two \: lines \:  \\  \\  \sf :  \implies \:  d_{1}. d_{2} \:  = (\hat{i} -  \hat{j} + 3 \hat{k})( - 3 \hat{i} -  \hat{j} +  \hat{k}) \\  \\ \sf :  \implies  \: d_{1}. d_{2} \:  =  - 3 + 1  + 3 = 1 = accute \: angles

 \sf :  \implies \: addition \: of \: the \: vector \:  \\  \\  \sf :  \implies \:  d_{1} +  d_{2} \:  = ( \hat{i} -  \hat{j} + 3 \hat{k}) + ( - 3 \hat{i} -  \hat{j} +  \hat{k}) \\  \\  \sf :  \implies \: d_{1} +  d_{2} \:  =  - 2 \hat{i} \:  - 2 \hat{j} + 4 \hat{k} \\  \\  \sf : \implies \:  d_{1} +  d_{2} \: it \: is \: written \: as \:  = (1 , 1 ,  - 2)

 \sf :  \implies \: suppose \: the \: line \: is \:  \\  \\ \sf :  \implies \: l \:  =  \frac{x -  \alpha }{l} =  \frac{y - 1}{m} =  \frac{z -  \gamma }{ - 2} \\  \\  \sf :  \implies \: point \: are \:  = ( \alpha   ,  1,   \beta ) \\  \\ \sf :  \implies \:  \alpha  - 1 = 1 =  \frac{y - 1}{2}

\sf :  \implies \:  \alpha  - 1 = 1 \\  \\ \sf :  \implies \:  \alpha  = 2 \\  \\ \sf :  \implies \:  \frac{y - 1}{ - 2}  = 1 \\  \\ \sf :  \implies \: y \:  =  - 1 \\  \\ \sf :  \implies \: it \: satisfied \: the \: equation \\  \\ \sf :  \implies \: l + m \:  = 2 \:  \:  \: and \:  \:  \:  \alpha  -  \gamma  = 3

Similar questions