Math, asked by Senbugha, 8 months ago

which of these are equivalent to 2tanx(sec^2x-1)/cos^3x​

Answers

Answered by draditipatra
11

Answer:

2 tan x( sec²x-1)/cos³x

WE KNOW THAT tan²theta=sec² theta-1

Hence,

2tan x(sec²x-1)= 2tan ( tan²x) = 2 tan³x

WE KNOW THAT cos theta=1/sec theta

Hence, cos³x=1/sec³x

so the fraction becomes:

2tan³x/1/sec³x

=2tan³x× sec³x

THEREFORE THE ANSWER IS ( 2tan³x)(sec³x)

Answered by Swarup1998
10

To find:

The simplified value of \mathsf{\dfrac{2\:tanx\:(sec^{2}x-1)}{cos^{3}x}}

Trigonometric formulae:

Before we solve the problem, let us know some trigonometric formulae,

  • \mathsf{cosA\:secA=1}

  • \mathsf{sec^{2}A-tan^{2}A=1}

Step-by-step explanation:

Now, \mathsf{\dfrac{2\:tanx\:(sec^{2}x-1)}{cos^{3}x}}

\mathsf{=\dfrac{2\:tanx\:tan^{2}x}{cos^{3}x}}

  • Formula used: \mathsf{sec^{2}A-1=tan^{2}A}

\mathsf{=2\:tan^{3}x\times (\dfrac{1}{cosx})^{3}}

\mathsf{=2\:tan^{3}x\:(secx)^{3}}

  • Formula used: \mathsf{\dfrac{1}{cosA}=secA}

\mathsf{=2\:tan^{3}x\:sec^{3}x}

Final Answer:

The simplified form of \mathsf{\dfrac{2\:tanx\:(sec^{2}x-1)}{cos^{3}x}} is \mathsf{2\:tan^{3}x\:sec^{3}x}.

Similar questions