Math, asked by modianilkumar21, 8 months ago

which of these in a way to convert 15/√63+√20 to an equivalent number whose denominator is a rational number?​

Answers

Answered by MaheswariS
19

\underline{\textsf{Given:}}

\mathsf{\dfrac{15}{\sqrt{63}+\sqrt{20}}}

\underline{\textsf{To find:}}

\textsf{A number equivalent to the given number}

\textsf{whose denominator is a rational number}

\underline{\textsf{Solution:}}

\textsf{Here,we have to rationalize the denominator of the given number}

\mathsf{Consider,}

\mathsf{\dfrac{15}{\sqrt{63}+\sqrt{20}}}

\textsf{To rationalize the denominator multiply both numerator and}

\mathsf{denominator\;by\,\sqrt{63}-\sqrt{20}}

\mathsf{\dfrac{15}{\sqrt{63}+\sqrt{20}}=\dfrac{15}{\sqrt{63}+\sqrt{20}}{\times}\dfrac{\sqrt{63}-\sqrt{20}}{\sqrt{63}-\sqrt{20}}}

\mathsf{\dfrac{15}{\sqrt{63}+\sqrt{20}}=\dfrac{15(\sqrt{63}-\sqrt{20})}{(\sqrt{63}+\sqrt{20})(\sqrt{63}-\sqrt{20})}}

\mathsf{\dfrac{15}{\sqrt{63}+\sqrt{20}}=\dfrac{15(\sqrt{63}-\sqrt{20})}{\sqrt{63}^2-\sqrt{20}^2}}

\mathsf{\dfrac{15}{\sqrt{63}+\sqrt{20}}=\dfrac{15(\sqrt{63}-\sqrt{20})}{63-20}}

\mathsf{\dfrac{15}{\sqrt{63}+\sqrt{20}}=\dfrac{15(\sqrt{63}-\sqrt{20})}{43}}

\therefore\mathsf{The\;required\;equivalent\;number\;is\;\dfrac{15(\sqrt{63}-\sqrt{20})}{43}}

\underline{\textsf{Find more:}}

√7 - 2/√7 + 2 = a√7 + b

https://brainly.in/question/1115376

If x = √7+ √3 and xy = 4, then x4 + y4 =​

https://brainly.in/question/16537214

17/3√2+1 rationalise the denominator

https://brainly.in/question/7645037

Answered by rathodvaishnavir80
0

Answer:

15uponroot63 gosbzgJbaoaoknm

vaonag16628

288

Similar questions