which one is correct please give explanation
Answers
Answer:
C .1/2
Explanation:
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1Now
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1Now R/Hmax = U^2 sin2@2/g/ u^2sin@2^2/2g
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1Now R/Hmax = U^2 sin2@2/g/ u^2sin@2^2/2g 2 = 2×2sin@2cos@2/sin@2×sin@2
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1Now R/Hmax = U^2 sin2@2/g/ u^2sin@2^2/2g 2 = 2×2sin@2cos@2/sin@2×sin@2 1 = 2cos@2/sin@2
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1Now R/Hmax = U^2 sin2@2/g/ u^2sin@2^2/2g 2 = 2×2sin@2cos@2/sin@2×sin@2 1 = 2cos@2/sin@2 tan@2 = 2
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1Now R/Hmax = U^2 sin2@2/g/ u^2sin@2^2/2g 2 = 2×2sin@2cos@2/sin@2×sin@2 1 = 2cos@2/sin@2 tan@2 = 2So
R/Hmax = U^2 sin2@1/g/ u^2sin@1^2/2g 4 = 2×2sin@1cos@1/sin@1×sin@1 1 = cos@1/sin@1 tan@1 = 1Now R/Hmax = U^2 sin2@2/g/ u^2sin@2^2/2g 2 = 2×2sin@2cos@2/sin@2×sin@2 1 = 2cos@2/sin@2 tan@2 = 2Sotan@1/tan@2 = 1/2