Math, asked by kshitij2sathe, 3 months ago

which one is with bigger volume. A cube of side 12cm or a a cuboid of sides 8×6×4 cm​

Answers

Answered by chegurivignesh18128
2

Answer:

lets find cube volume=s³

given, one side of cube =12cm

∴volume of the cube=[12]³

                              =1728 cm³

and now find volume of the cuboid=lxbxh

volume of the given cuboid=8x6x4

                                           =192 cm³

the bigger volume is cube

Answered by DüllStâr
53

Required Answer:

Part 1:

To find volume of cube:

We know:

 \checkmark \boxed{ \rm volume \: of \: cube =  {side}^{3} }

By using this formula we can find value of volume of cube

 \dashrightarrow\sf volume \: of \: cube =  {side}^{3}  \\  \\  \dashrightarrow \sf  volume \: of \: cube =  {12}^{3}  \\  \\ \sf   \dashrightarrow volume \: of \: cube = 12 \times 12 \\  \\  \dashrightarrow \underline {\boxed{\sf volume \: of \: cube = 1728 {cm}^{3} }}

Part 2:

To find volume of cuboid:

We know:

 \checkmark \boxed{ \rm volume \: of \: cuboid = length \times bredth \times height}

By using this formula we can find volume of cuboid

 \dashrightarrow\sf volume \: of \: cuboid =  lenght \times breadth \times height \\  \\  \dashrightarrow \sf  volume \: of \: cuboid = 8 \times 6 \times 4\\  \\ \sf   \dashrightarrow volume \: of \: cuboid = 8 \times 24 \\  \\  \dashrightarrow \underline {\boxed{\sf volume \: of \: cuboid = 192 {cm}^{3} }}

Part 3:

comparison

Now as we can see

 \dashrightarrow \sf1728 > 192

 \therefore

 \underline{ \rm{}volume \: of \: cube \: is \: greater \: than \: volume \: of \: cuboid} \checkmark

Similar questions