Math, asked by elkah, 1 year ago

Which sequences are geometric? Check all that apply. –2, –4, –6, –8, –10, … 16, –8, 4, –2, 1 –15, –18, –21.6, –25.92, –31.104, … 4, 10.5, 17, 23.5, 30, … 625, 125, 25, 5, 1, …

Answers

Answered by Swayze
27
16, -8,4,-2,1
-15,-18, -21.6, -25.92, -31.104,...
625, 125, 25, 5, 1,...
these are the correct ones.
Answered by ashishks1912
9

GIVEN :

The sequences are a) -2, -4, -6, -8, -10, …

b) 16, -8, 4, -2, 1

c) -15, -18, -21.6, -25.92,-31.104, …

d) 4, 10.5, 17, 23.5, 30, …

e)  625, 125, 25, 5, 1, …

TO FIND :

The sequence which are geometric sequence .

SOLUTION :

The three below sequences are geometric sequences

b) 16, -8, 4, -2, 1

c) -15, -18, -21.6, -25.92,-31.104, …

e)  625, 125, 25, 5, 1, …

FOR :

b) Given sequence is 16, -8, 4, -2, 1

Let a_1=16 ,a_2=-8 , a_3=4,...

The formula for common ratio is :

r=\frac{a_2}{a_1}

Substitute the values  a_1=16 ,a_2=-8 in the above  formula we get

r=\frac{-8}{16}

=-\frac{1}{2}

r=-\frac{1}{2}

The formula for common ratio is :

r=\frac{a_3}{a_2}

Substitute the values  a_3=4 ,a_2=-8 in the above  formula we get

r=\frac{4}{-8}

=-\frac{1}{2}

r=-\frac{1}{2}

Hence the common ratio r=-\frac{1}{2}

Hence the given sequence 16, -8, 4, -2, 1  is a geometric sequence.

c) Given sequence is -15, -18, -21.6, -25.92,-31.104,

Let a_1=-15 ,a_2=-18 , a_3=-21.6,...

The formula for common ratio is :

r=\frac{a_2}{a_1}

Substitute the values  a_1=-15 ,a_2=-18 in the above  formula we get

r=\frac{-18}{-15}

=\frac{6}{5}

r=1.2

The formula for common ratio is :

r=\frac{a_3}{a_2}

Substitute the values  a_3=-21.6 ,a_2=-18 in the above  formula we get

r=\frac{-21.6}{-18}

r=1.2

Hence the common ratio r=1.2

Hence the given sequence -15, -18, -21.6, -25.92,-31.104,   is a geometric sequence.

e) Given sequence is 625, 125, 25, 5, 1, …

Let a_1=625 ,a_2=125 , a_3=25,...

The formula for common ratio is :

r=\frac{a_2}{a_1}

Substitute the values  a_1=625 ,a_2=125 in the above  formula we get

r=\frac{625}{125}

=\frac{1}{5}

r=\frac{1}{5}

The formula for common ratio is :

r=\frac{a_3}{a_2}

Substitute the values  a_3=25 ,a_2=125 in the above  formula we get

r=\frac{25}{125}

=\frac{1}{5}

r=\frac{1}{5}

Hence the common ratio r=\frac{1}{5}

Hence the given sequence 625, 125, 25, 5, 1, … is a geometric sequence.

∴ The three below sequences are geometric sequences.

b) 16, -8, 4, -2, 1

c) -15, -18, -21.6, -25.92,-31.104, …

e)  625, 125, 25, 5, 1, …

Similar questions