Math, asked by mdaliansari7477, 10 months ago

Which term of A.P. 5/6, 1, 1 1/6, 3 1/3 is 3?

Answers

Answered by Anonymous
6

Answer:

elloh

A=5/6

D=t2-t1

=1-5/6

=1/6

Let 3 be the tn term of this ap

Tn=a+(n-1)d

3=5/6+(n-1)1/6

3-5/6=n-1)1/6

13/6 ×6=n-1

13=n-1

14=n

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{14\:term\:of\:A.P\:is\:3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Fiven : }} \\  \tt:  \implies A.P  =  \frac{5}{6} ,1, \frac{7}{6} , \frac{10}{3}  \\  \\  \red{\underline \bold{To \: Find: }} \\  \tt:  \implies Which \: term \: is \:  3 = ?

• According to given question :

 \tt \circ \: First \: term =  \frac{5}{6}  \\  \\  \tt : \implies Common \: difference =  a_{2} -  a_{1}  \\  \\ \tt : \implies Common \: difference =1 -  \frac{5}{6} \\  \\ \tt \circ \:  Common \: difference =  \frac{1}{6}  \\  \\  \tt \circ \:  a_{n} = 3  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n} =  a + (n - 1)d \\  \\  \tt:  \implies 3 =  \frac{5}{6}  + (n - 1) \times  \frac{1}{6}  \\  \\  \tt:  \implies  3 - \frac{5}{6}  =  \frac{1}{6} n -  \frac{1}{6}  \\  \\  \tt:  \implies  \frac{18 - 5}{6}  =  \frac{n - 1}{6}  \\  \\  \tt:  \implies 18 - 5 = n - 1 \\  \\  \tt:  \implies 13 + 1 = n \\  \\   \green{\tt:  \implies n = 14 } \\  \\   \green{\tt \therefore 14 \: th \: term \: of \: this \: ap \: is \: 3}

Similar questions