Which term of an ap 150,147,144. Is its first negative no?
Answers
Answered by
7
Hey there !!
→ Given :-
→ a₁ = 150.
→ a₂ = 147.
Then, d = a₂ - a₁ .
⇒ d = 147 - 150 = -3.
To find :-
→ n ( first negative term).
Solution :-
Let the nth term of the given AP be the first negative term .
then, Tn < 0 .
⇒ [ a + ( n - 1 )d] < 0.
⇒ [ 150 + ( n - 1) × (-3) ] <0.
⇒ [ 150 - 3n + 3 ] < 0.
⇒ [ 153 - 3n ] < 0.
⇒ 153 < 3n .
⇒ 3n > 153.
⇒ n > 153/3.
⇒ n > 51.
∴ n = 52.
Hence, the 52th term is the first negative term of the given AP.
THANKS
#BeBrainly.
→ Given :-
→ a₁ = 150.
→ a₂ = 147.
Then, d = a₂ - a₁ .
⇒ d = 147 - 150 = -3.
To find :-
→ n ( first negative term).
Solution :-
Let the nth term of the given AP be the first negative term .
then, Tn < 0 .
⇒ [ a + ( n - 1 )d] < 0.
⇒ [ 150 + ( n - 1) × (-3) ] <0.
⇒ [ 150 - 3n + 3 ] < 0.
⇒ [ 153 - 3n ] < 0.
⇒ 153 < 3n .
⇒ 3n > 153.
⇒ n > 153/3.
⇒ n > 51.
∴ n = 52.
Hence, the 52th term is the first negative term of the given AP.
THANKS
#BeBrainly.
Answered by
3
In the AP 150, 147, 144, … the common difference is -3.
The first negative term will be -3.
Tn = a +(n-1)d = -3, or
150 + (n-1)(-3) = -3, or
n-1 = (150+3)/3 = 153/3 = 51, or
n = 52.
The 52nd term will be the first negative term.
Check: T52 = a+(n-1)d = 150 +(52–1)(-3)
= 150 + 51(-3) = 150 - 153 = -3. Correct.
The first negative term will be -3.
Tn = a +(n-1)d = -3, or
150 + (n-1)(-3) = -3, or
n-1 = (150+3)/3 = 153/3 = 51, or
n = 52.
The 52nd term will be the first negative term.
Check: T52 = a+(n-1)d = 150 +(52–1)(-3)
= 150 + 51(-3) = 150 - 153 = -3. Correct.
Similar questions