Math, asked by praveenrandy6781, 1 year ago

Which term of an ap - 7 - 12 - 17 - 22 will be - 82? Is -180 term of an ap give reason for your answer?

Answers

Answered by Anonymous
50

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

\textbf{\underline{Arithmetic\;Progression}}

-7,-12,-17,-22

\textbf{\underline{First\;Term}}

= -7

\textbf{\underline{Common\; Difference}}

= -12 - (-7)

= -5

\textbf{\underline{Assume}}

{\boxed{\sf\:{n^{th}\;term\;be\;-82}}}

{\boxed{\sf\:{a_{n}=a+(n-1)d}}}

-82 = -7 + (n - 1)(-5)

-82 + 7 = (n - 1)(-5)

-75 = (n - 1)(-5)

\tt{\rightarrow n-1=\dfrac{-75}{-5}}

n - 1 = 15

n = 15 + 1

n = 16

\textbf{\underline{Hence,}}

{\boxed{\sf\:{-82\;is\;the\;16^{th}\;term\;of\;an\;AP}}}

\textbf{\underline{Assume}}

{\boxed{\sf\:{m^{th}\;term\;be\;-180}}}

-180 = -7 + (m - 1)(-5)

-173 = (m - 1)(-5)

\tt{\rightarrow m-1=\dfrac{-173}{-5}}

\tt{\rightarrow m-1=\dfrac{173}{5}}

\tt{\rightarrow m=\dfrac{173}{5}+1}

\tt{\rightarrow m=\dfrac{178}{5}}

{\boxed{\sf\:{nth\;term\;never\;be\;in\;fraction}}}

\textbf{\underline{Therefore}}

\Large{\boxed{\sf\:{-180\;is\;not\;the\;term\;of\;AP}}}

Answered by MadamCurie
36

Answer: 16 th term of the given ap is -82 and -180 will not be a term in the given ap

Step-by-step explanation:

given :  -7, -12 ,-17 ,-22........

common difference 'd ' is a_{2} -a_{1}

here a_{2} is -12

and  a_{1} is -7

so 'd ' is :

-12-(-7)

-12 +7 = -5

so therefore 'd' is -5

now ,

a_{n} = a + (n - 1) d

(1) a_{n} = -82

-82 = -7 + ( n - 1 ) -5

-82= -7 - 5n +5

-82 = -2 - 5n

-82 +2 = - 5n

-80 = -5n

n = -80/-5

n   = 16

-82 is the 16th term in the ap

(2) a_{n} =  -180

-180 = -7 + ( n - 1 ) -5

-180= -7 - 5n +5

-180 = -2 - 5n

-180 +2 = - 5n

-178 = -5n

n = -178/-5

n   =  32.6

-180 is not a term of given ap since " n " value cannot be negative , fractional , decimal .

Similar questions