Math, asked by arsha2861, 10 months ago

which term of AP:121,117,113,......is it's first term negative (Hint:Find n for an
<0)​

Answers

Answered by vaibhav1234599
2

Answer:

General term or nth term of A.P

The general term or nth term of A.P is given by an = a + (n – 1)d,

where a is the first term, d is the common difference and n is the number of term.

----------------------------------------------------------------------------------------------------

Step-by-step explanation:

Given:first term(a)= 121 

common difference (d)= 117- 121 = -4

∵ n th term of an AP

an = a + (n – 1)d

⇒121+(n-1) ×(-4)

⇒121-4n+4

⇒12+4-4n

⇒125 -4n

an= 125 -4n

For first negative term , an <0

⇒ 125-4n<0

⇒125<4n

⇒4n>125

⇒n>125/4

⇒n> 31 1/4

least integral value of n= 32

Hence, 32nd term of the given AP is the first negative term. 

----------------------------------------------------------------------------------------------------

Hope this will help you...

Answered by Anonymous
42

\rule{200}3

\Huge{\red{\underline{\textsf{Answer}}}}

\sf AP\: is \: 121,\: 117,\: 113,......

\sf The\:n^{th}\: term \:of \: on \: AP\: is given\: by

\sf a_n = a + (n - 1)d

\rule{200}3

\large{\pink{\underline{\tt{Given :-}}}}

\sf a = 121

\sf d = 117 - 121 = -4

\rule{200}3

\large{\orange{\underline{\tt{Solution :-}}}}

Let the nth term of the AP be the first negative term.

\sf a_n &lt; 0

\sf a + (n - 1)d &lt; 0

By putting a = 121 and d = -4

\purple\longrightarrow \purple{\sf 121 + (n - 1) (-4) &lt; 0 }

\purple\longrightarrow \purple{\sf 121 - 4n + 4 &lt; 0}

\purple\longrightarrow \purple{\sf 125 - 4n &lt; 0}

\purple\longrightarrow \purple{\sf 125 &gt; 4n}

\purple\longrightarrow \purple{\sf 4n &lt; 125}

\purple\longrightarrow \purple{\large\sf n &gt; \frac{125}{4}}

\pink\longrightarrow \underline{\boxed{\pink{\sf n &gt; 31.25}}} \orange\star

Since the negative term is greater than 31.25, it is 32nd term.

\rule{200}3

Similar questions