Math, asked by RICKY7, 1 year ago

which term of sequence 17 ,16 1/5 ,15 2/5 ,14 3/5 ......is thr 1 st -ve term.....plz tmr is my test

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{17,16\dfrac{1}{5},15\dfrac{2}{5},14\dfrac{3}{5}\;.\;.\;.\;.\;.\;.}

\underline{\textbf{To find:}}

\textsf{First negative term of the given sequence}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{17,16\dfrac{1}{5},15\dfrac{2}{5},14\dfrac{3}{5}\;.\;.\;.\;.\;.\;.}

\textsf{This can be written as,}

\mathsf{17,\dfrac{81}{5},\dfrac{77}{5},\dfrac{73}{5}\;.\;.\;.\;.\;.\;.}

\textsf{Clearly, this is an A.P with first term}\;\mathsf{a=17\;and\;d=\dfrac{-4}{5}}

\mathsf{Let\;t_n\;be\;the\;first\;negative\;term}

\implies\mathsf{t_n\;<\;0}

\implies\mathsf{a+(n-1)d\;<\;0}

\implies\mathsf{17+(n-1)\left(\dfrac{-4}{5}\right)\;<\;0}

\implies\mathsf{17-(n-1)\left(\dfrac{4}{5}\right)\;<\;0}

\implies\mathsf{\dfrac{85-4n+4}{5}\;<\;0}

\implies\mathsf{\dfrac{89-4n}{5}\;<\;0}

\implies\mathsf{89-4n\;<\;0}

\implies\mathsf{-4n\;<\;-89}

\implies\mathsf{4n\;>\;89}

\implies\mathsf{n\;>\;\dfrac{89}{4}}

\implies\mathsf{n\;>\;22.25}

\textsf{Since n is a natural number just greater than 22.5,}

\textsf{we have n=23}

\therefore\textbf{23 rd term is the first negative term}

Similar questions