Math, asked by honey2235, 1 year ago

Which term of the AP :21,18,15,......is -81?, is any term 0​

Answers

Answered by gouse718
2

Answer:

In an AP

a=21

d=-3

l=-81

a+(n-1)d=-81

21+(n-1)(-3)=-81

(n-1)(-3)=-81-21

(n-1)(-3)=-102

(n-1)=-102/-3

(n-1)=34

n=34+1

n=35

Step-by-step explanation:

also a+(n-1)d=0

21+(n-1)(-3)=0

(n-1)(-3)=-21

n-1=-21/-3

n-1=7

n=7+1

n=8

therefore 8th term is zero

Answered by BrainlyConqueror0901
74

Answer:

\huge{\pink{\boxed{\green{\sf{n_{1}=35}}}}}

\huge{\pink{\boxed{\green{\sf{n_{2}=8}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \: { \orange{given}} \\ { \pink{ \boxed{ \green{a.p = 21.18.15.......}}}} \\ { \pink{ \boxed{ \green{a_{1} = 21 }}}} \\ { \pink{ \boxed{ \green{d= - 3 }}}} \\ { \pink{ \boxed{ \green{a_{n} =  - 81 }}}} \\  \\ { \blue{to \: find}} \\ { \purple{ \boxed{ \red{n= }}}}

According to given question:

 \to a _{n}  = a + (n - 1)d \\  \to  - 81 =21 + (n_{1} - 1) \times  - 3 \\  \to  - 81 - 21 =  - 3n_{1}  + 3  \\  \to  - 102 =  - 3n_{1}+ 3 \\  \to  - 102  - 3 =   - 3n_{1} \\  \to - 105 =  - 3n_{1} \\  \to n_{1} =  \frac{ - 105}{ - 3}  \\  {\pink{ \boxed{ \green{ \therefore  n_{1} = 35 }}}}

_________________________________________

Again,

By taking an = 0

 \to  a_{n} = a + ( n_{2}  - 1)d \\ \to 0 = 21 + ( n_{2}  - 1) \times  - 3 \\  \to  - 21 = ( n_{2}  - 1) \times  - 3 \\  \to  \frac{ - 21}{ - 3}  =  n_{2} - 1 \\ \to 7 + 1 =  n_{2}  \\  { \pink{ \boxed{ \green{ \therefore  n_{2}  = 8 }}}}

_________________________________________

Similar questions