English, asked by itzHitman, 6 months ago

Who is the co -founder of Microsoft???​

Answers

Answered by Anonymous
11

Answer:

Bill Gates and Paul Allen.

Explanation:

hope it helps you :(

Answered by anisha11035
1

Solution :-

\: \: \: \: \: \: \: \:  \rm{\displaystyle\int{\dfrac{3x^{2}}{x^{2} + 1} \: dx}}

\: \: \: \: \: \: \rm{3 \displaystyle\int{\dfrac{x^{2}}{x^{2} + 1} \: dx}}

\: \: \: \: \rm{3 \displaystyle\int{\dfrac{(x^{2} + 1) - 1}{(x^{2} + 1)} \: dx}}

\: \: \: \: \rm{3 \bigg[\displaystyle\int{\dfrac{\cancel{(x^{2} + 1)}}{\cancel{(x^{2} + 1)}} \: dx} - \displaystyle\int{\dfrac{1}{(1 + x^{2})}dx} \bigg]}

\: \: \: \: \rm{3 \bigg[\displaystyle\int{1 \: dx} - \displaystyle\int{\dfrac{1}{(1 + x^{2})} \: dx} \bigg]}

as we know that -

\: \: \: \: \: \: \: \: \: \: \: \:  \rm{\boxed{\blue{\displaystyle\int{1 \: dy \: \: = \: \: y}}}}

\: \: \: \: \: \rm{\boxed{\blue{\displaystyle\int{\dfrac{1}{(1 + y^{2})} \: dy \: \: = \: \: tan^{-1} y}}}}

on applying these properties

\: \: \: \: \: \: \rm{\pink{3\bigg(x - tan^{-1} x\bigg) + c}}

Attachments:
Similar questions