Whole root of 999 * 1000 * 1001 * 1002 + 1
Answers
Answered by
16
Given: The term √( 999 * 1000 * 1001 * 1002 + 1 )
To find: The value of the given term?
Solution:
- Now we have given : √( 999 * 1000 * 1001 * 1002 + 1 )
- Let n = 999, then:
√( n x (n+1) x (n+2) x (n+3) + 1 )
√ ( (n² + 3n) x (n² + 3n + 2) + 1 )
- Now let n² + 3n = y, then we get:
√ ( y x (y + 2) + 1 )
√ ( y² x 2y + 1 )
√ ( y + 1 )²
y + 1
- Now again re substituting the values, we get:
n² + 3n + 1
- Putting n = 999, we get:
999² + 3(999) + 1
998001 + 2997 + 1
1000999
Answer:
So the square root of the given term is: 1000999
Answered by
6
Step-by-step explanation:
please mark as brainliest friend and follow me
Attachments:
Similar questions