Physics, asked by Charit9953, 9 months ago

) Whose value may be zero for a moving particle -(a) Displacement(b) Distance(c) Speed(d) None of these​

Answers

Answered by BrainlyIAS
91

Answer

( a ) Displacement

Explanation

During some time interval for a moving particle distance can't be zero .

So , Speed also can't be zero .

But displacement may be zero .

Reason :

Displacement is defined as shortest distance b/w final and initial positions .

So , final position may coincide with initial position . Hence , Displacement may be zero .

More Info

  • Distance is a scalar quantity
  • Speed is scalar quantity
  • Displacement is vector quantity

Anonymous: Nice :)
Answered by Anonymous
13

\sf{\underbrace\green{Answer \implies (a)\:Displacement}}

\sf\red{\underline{\underline{Reason:}}}

\sf{During \:some\: interval,\: distance\: cannot\: be\: zero\: so\: as}\sf{speed \:but \:displacement\: may\: be \:zero\: because \:final}\sf{position\: of \:the \:particle\: may\: coincide\: with\: its\: initial}\sf{position.}

\sf\purple{\underline{\underline{In\:Detail:}}}

(1️⃣)\sf{For \:Scalar\: quantities, \:they\: depends\: only \:on\: the}\sf{ magnitude \:of \:the\: term, \:direction\: doesn't\: matter \:of}\sf{scalar \:quantities.}

(2️⃣).\sf{For\: the \:vector\: quantity, \:it\: depends \:upon \:the}\sf{direction\: of \:that \:vector \:as \:well\: as\: magnitude.}

\sf{So, \:sum\: can \:be\: zero\: after\: some\: time.}

\sf\orange{\underline{ In\: this \:case\: only \:Displacement \:can \:be}}\sf\orange{\underline{ zero\: after\: some \:time.}}

Similar questions