why do fire fles golw eat night
Answers
Answer:
The most common type of secondary structure in proteins is the α-helix. Linus Pauling was the first to predict the existence of α-helices. The prediction was confirmed when the first three-dimensional structure of a protein, myoglobin (by Max Perutz and John Kendrew) was determined by X-ray crystallography. An example of an α-helix is shown on the figure below. This type of representation of a protein structure is called sticks representation. To give you a better impression of how a helix looks like, only the main chain of the polypeptide is show in the figure, no side chains. There are 3.6 residues/turn in an α-helix, which means that there is one residue every 100 degrees of rotation (360/3.6). Each residue is translated 1.5 Å along the helix axis, which gives a vertical distance of 5.4 Å between structurally equivalent atoms in a turn (pitch of a turn). The repeating structural pattern in helices is a result of repeating φ values and ψ values, observed as mentioned earlier in the text, as clustering of the corresponding torsion angles within the helical region of the Ramachandran plot. The α-helix is the major structural element in proteins. When looking at the helix in the figure below, we notice how the carbonyl oxygen atoms C=O (shown in red) point in one direction, towards the amide NH groups 4 residues away (i, i+4). Together these groups form a hydrogen bond, one of the main forces in the stabilization of secondary structure in proteins. The hydrogen bonds are shown on the right figure as dashed lines.
Answer: Because of its name fire fly