Why magnetic field exert charge on moving charge only?
Answers
Answered by
0
The magnetic force on a moving charge is one of the most fundamental known. Magnetic force is as important as the electrostatic or Coulomb force. Yet the magnetic force is more complex, in both the number of factors that affects it and in its direction, than the relatively simple Coulomb force. The magnitude of the magnetic force F on a charge q moving at a speed v in a magnetic field of strength Bis given by
F = qvB sin θ,
where θ is the angle between the directions of v and B. This force is often called the Lorentz force. In fact, this is how we define the magnetic field strength B—in terms of the force on a charged particle moving in a magnetic field. The SI unit for magnetic field strength B is called the tesla(T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943). To determine how the tesla relates to other SI units, we solve F = qvB sin θ for B.
B=FqvsinθB=Fqvsinθ
Because sin θ is unitless, the tesla is
1 T=1 N C⋅ m/s=1 NA⋅ m1 T=1 N C⋅ m/s=1 NA⋅ m
(note that C/s = A). Another smaller unit, called the gauss (G), where 1 G = 10−4 T, is sometimes used. The strongest permanent magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. The Earth’s magnetic field on its surface is only about 5 × 10−5 T, or 0.5 G.
The direction of the magnetic force F is perpendicular to the plane formed by v and B, as determined by the right hand rule 1(or RHR-1), which is illustrated in Figure 1. RHR-1 states that, to determine the direction of the magnetic force on a positive moving charge, you point the thumb of the right hand in the direction of v, the fingers in the direction of B, and a perpendicular to the palm points in the direction of F. One way to remember this is that there is one velocity, and so the thumb represents it. There are many field lines, and so the fingers represent them. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge.
F = qvB sin θ,
where θ is the angle between the directions of v and B. This force is often called the Lorentz force. In fact, this is how we define the magnetic field strength B—in terms of the force on a charged particle moving in a magnetic field. The SI unit for magnetic field strength B is called the tesla(T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943). To determine how the tesla relates to other SI units, we solve F = qvB sin θ for B.
B=FqvsinθB=Fqvsinθ
Because sin θ is unitless, the tesla is
1 T=1 N C⋅ m/s=1 NA⋅ m1 T=1 N C⋅ m/s=1 NA⋅ m
(note that C/s = A). Another smaller unit, called the gauss (G), where 1 G = 10−4 T, is sometimes used. The strongest permanent magnets have fields near 2 T; superconducting electromagnets may attain 10 T or more. The Earth’s magnetic field on its surface is only about 5 × 10−5 T, or 0.5 G.
The direction of the magnetic force F is perpendicular to the plane formed by v and B, as determined by the right hand rule 1(or RHR-1), which is illustrated in Figure 1. RHR-1 states that, to determine the direction of the magnetic force on a positive moving charge, you point the thumb of the right hand in the direction of v, the fingers in the direction of B, and a perpendicular to the palm points in the direction of F. One way to remember this is that there is one velocity, and so the thumb represents it. There are many field lines, and so the fingers represent them. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge.
Similar questions