Math, asked by varunchandra29pcmeb2, 1 year ago

if A+B+C=2S then prove that cos(s-a)+cos(s-b)+cos(c)=4cos(s-a/2).cos(s-b/2).cosc/2-1

Answers

Answered by rohitkumargupta
31

HELLO DEAR,

Your questions is ------------> if A + B + C = 2S then prove that \sf{cos(S - A) + cos(S - B) + cosc = -1 + 4cos(S - A/2)*cos(S - B/2)*cos(c/2).}

\sf{GIVEN:-A + B + C = 2S}

we know :- \sf{cosA + cosB = 2cos(A + B)/2 * cos(A - B)/2}

Now, L.H.S = \sf{cos(A - A) + cos(S - B) + cosc =2cos\frac{S - A + S - B}{2}*cos\frac{S - A - S + B}{2} + cosc}

\sf{2cos(2S - A - B)/2*cos(B - A)/2 + cosc}

\sf{2cos(A + B + C - A - B)/2 * cos(B - A)/2 + cosc}
\to\to\to\to\to\to\to\boxed{\bold{A + B + C = 2S}}

\sf{2cos(C/2)*cos(B - A)/2 + 2cos^2(c/2) - 1}

\sf{2cos(c/2)[cos(B - A)/2 + cos(c/2)] - 1}

\sf{2cos(c/2)[2cos\frac{(B - A + C)/2}{2} * cos\frac{(B - A - C)/2}{2}] - 1}

\sf{4cos(c/2)[cos\frac{2S - A - A}{4}*cos\frac{2S - B - B}{2}] - 1}
\to\to\to\to\to\to\to\boxed{\bold{A + B + C = 2S}}

\sf{4cos(C/2)*cos(S - A)/2*cos(S - B)/2 - 1}

Hence, \boxed{\sf{cos(S - A) + cos(S - B) + cosc = -1 + 4cos(S - A/2)*cos(S - B/2)*cos(c/2).}}

I HOPE ITS HELP YOU DEAR,
THANKS

Answered by vishwak65
6

Answer:

Hope this helps you mark me as the brainliest

Attachments:
Similar questions