Math, asked by Aadarsh10201, 4 months ago

With step by step explaination ​

Attachments:

Answers

Answered by vipashyana1
1

Answer:

 \sqrt{ \frac{1 - sinθ}{1 + sinθ} }  = sec θ- tanθ

 \sqrt{ \frac{1 - sinθ}{1 + sinθ} }  \times  \sqrt{ \frac{1 - sinθ}{1 - sinθ} }  = secθ - tanθ

 \sqrt{ \frac{(1 - sinθ)(1 - sinθ)}{(1 + sinθ)(1 - sinθ)} }  =secθ  - tanθ

 \sqrt{ \frac{ {(1 - sinθ)}^{2} }{ {(1)}^{2}  -  {(sinθ)}^{2} } }  =secθ  - tanθ

 \sqrt{ \frac{ {(1 - sinθ)}^{2} }{1 -  {sinθ}^{2} } }  = secθ - tanθ

 \sqrt{ \frac{ {(1 - sinθ)}^{2} }{ {cosθ}^{2} } }  =  secθ- tanθ

 \frac{1 - sinθ}{cosθ}  = secθ - tanθ

 \frac{1}{cosθ}  -  \frac{sinθ}{cosθ}  =  secθ- tanθ

secθ - tanθ =  secθ- tanθ

L.H.S=R.H.S

Hence \:  proved

Answered by PharohX
3

TO PROVE :-

 \sf \sqrt{ \frac{1 -  \sin( \theta) }{1 +  \sin( \theta) } }  =  \sec( \theta) -  \tan( \theta)   \\

SOLUTION :-

 \sf \: Taking  \:  \: LHS.

 \sf \sqrt{ \frac{1 -  \sin( \theta) }{1 +  \sin( \theta) } }   \\

 \sf \: Rationalization  \: \: of  \: \: denominator

 =  \sf \sqrt{ \frac{(1 -  \sin( \theta)  )}{(1 +  \sin( \theta)) }  \times \frac{(1 -  \sin( \theta)  )}{(1 -  \sin( \theta)) }} \\

 =  \sf \sqrt{ \frac{(1 -  \sin( \theta)) {}^{2}  }{1  -   \sin {}^{2} ( \theta) } }   \\

  = \sf \sqrt{ \frac{(1 -  \sin( \theta)) {}^{2}  }{ \cos {}^{2} ( \theta) } }   \\

  = \sf  \frac{1 -  \sin(\theta)}{ \cos( \theta) }    \\

 =  \sf \:  \frac{1}{ \cos( \theta) }  -  \frac{ \sin( \theta) }{ \cos( \theta) }  \\

 \sf \:  =   \sec( \theta)  -  \tan( \theta)

  • PROVED
Similar questions