Without actual division , prove that x4 – 5x3 + 8x2 -10x +12 is divisible by x2 -5x + 6
quality answer needed no spamming
Answers
EXPLANATION.
Without actual division,
⇒ x⁴ - 5x³ + 8x² - 10x + 12 is divisible by x² - 5x + 6.
As we know that,
⇒ x² - 5x + 6 = 0.
Factorizes the equation into middle term splits, we get.
⇒ x² - 3x - 2x + 6 = 0.
⇒ x(x - 3) - 2(x - 3) = 0.
⇒ (x - 2)(x - 3) = 0.
⇒ x = 2 and x = 3.
Put the value of x = 2 in the equation, we get.
⇒ p(x) = x⁴ - 5x³ + 8x² - 10x + 12.
⇒ p(2) = (2)⁴ - 5(2)³ + 8(2)² - 10(2) + 12.
⇒ p(2) = 16 - 40 + 32 - 20 + 12.
⇒ p(2) = 16 + 32 + 12 - 40 - 20.
⇒ p(2) = 60 - 60.
⇒ p(2) = 0.
Put the value of x = 3 in the equation, we get.
⇒ p(x) = x⁴ - 5x³ + 8x² - 10x + 12.
⇒ p(3) = (3)⁴ - 5(3)³ + 8(3)² - 10(3) + 12.
⇒ p(3) = 81 - 135 + 72 - 30 + 12.
⇒ p(3) = 81 + 72 + 12 - 135 - 30.
⇒ p(3) = 165 - 165.
⇒ p(3) = 0.
Hence Proved.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
- x⁴ - 5x³ + 8x² - 10x + 12 is divisible by x² - 5x + 6.
ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━
★ Splitting the middle term of [eqⁿ (2)] :-
★ Putting x = 2, in [eqⁿ (1)] :-
★ Putting x = 3, in [eqⁿ (1)] :-
ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━
- Both time, putting x = 2 and x = 3, in [eqⁿ (1)] we get p(x) = 0.
- Therefore, x⁴ - 5x³ + 8x² - 10x + 12 is divisible by x² - 5x + 6.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬