Math, asked by rohith4502, 8 months ago

Without actual division show that each of the following rational numbers is a terminating decimal express it in decimal form
A.23/(2³*5²)
B.24/125
C.171/800
D.15/1600
E.17/320
F.19/3125​

Answers

Answered by ridhima0890
0

Step-by-step explanation:

Without actual division show that each of the following rational numbers is a terminating decimal Express each in decimal form

\begin{gathered}1) \frac{ 20352}{ {3 \times 5}^{2} } \\ \\ 2) \frac{24}{125} \\ \\ 3) \frac{171}{800} \\ \\ 4) \frac{15}{1600} \\ \\ 5) \frac{19}{3125} \\ \\\end{gathered}

1)

3×5

2

20352

2)

125

24

3)

800

171

4)

1600

15

5)

3125

19

To solve these questions:

1) Calculate the prime factors of the denominator

2) If those factors are in the form

{2}^{n} \times {5}^{m} \: \: \: \: m \:, n \: \geqslant 02

n

×5

m

m,n⩾0

then the numbers have terminating decimal expansion.

\begin{gathered}1) \frac{ (20352) }{3 \times ( {5)}^{2} } \\ \\ it \: is \: \: shown \: that \: factors \: of \: denominator \: are \: not \: in \: \\ form \: {2}^{n} \times {5}^{m} \\ \\ but \: the \: given \: number \: is \: not \: simple \: rational \: number \\ \: so \: convert \: it \: into \: simple \: form \: first \\ \\ \frac{6784}{ {5}^{2} } \\ this \: rational \: number \: have \: terminating \: decimal \: expansion. \\ \\ \frac{6784 \times 4}{ {(2 \times 5)}^{2} } \\ \\ = \frac{27136}{( {10)}^{2} } \\ \\ = \frac{27136}{100} = 271.36 \\ \\\end{gathered}

1)

3×(5)

2

(20352)

itisshownthatfactorsofdenominatorarenotin

form2

n

×5

m

butthegivennumberisnotsimplerationalnumber

soconvertitintosimpleformfirst

5

2

6784

thisrationalnumberhaveterminatingdecimalexpansion.

(2×5)

2

6784×4

=

(10)

2

27136

=

100

27136

=271.36

\begin{gathered}2) \: \frac{24}{125} = \frac{24}{ {(5)}^{3} } \\ it \: is \: \: shown \: that \: factors \: of \: denominator \: are \: \: in \: \\ form \: {2}^{n} \times {5}^{m} \\ \\ this \: rational \: number \: have \: terminating \: decimal \: expansion. \\ \\ \frac{24 \times {(2}^{3} )}{( {5}^{3})( {2}^{3} ) } \\ \\ = \frac{24 \times8 }{( {10)}^{3} } \\ \\ = \frac{192}{1000} = 0.192 \\ \\\end{gathered}

2)

125

24

=

(5)

3

24

itisshownthatfactorsofdenominatorarein

form2

n

×5

m

thisrationalnumberhaveterminatingdecimalexpansion.

(5

3

)(2

3

)

24×(2

3

)

=

(10)

3

24×8

=

1000

192

=0.192

\begin{gathered}3) \frac{171}{800} \\ \\ = \frac{171}{( {2}^{5})( {5}^{2} )} \\ \\ it \: is \: \: shown \: that \: factors \: of \: denominator \: are \: \: in \: \\ form \: {2}^{n} \times {5}^{m} \\ \\ this \: rational \: number \: have \: terminating \: decimal \: expansion. \\ \\ \frac{171 \times {(5}^{3} )}{( {2}^{5})( {5}^{5} ) } \\ \\ = \frac{171 \times125 }{( {10)}^{5} } \\ \\ = \frac{21375}{100000} = 0.21375 \\ \\\end{gathered}

3)

800

171

=

(2

5

)(5

2

)

171

itisshownthatfactorsofdenominatorarein

form2

n

×5

m

thisrationalnumberhaveterminatingdecimalexpansion.

(2

5

)(5

5

)

171×(5

3

)

=

(10)

5

171×125

=

100000

21375

=0.21375

\begin{gathered}4) \frac{15}{1600} \\ \\ = \frac{15}{ {2}^{6} \times {5}^{2} } \\ \\ = \frac{3}{ {2}^{6} \times 5} \\ \\ = \frac{3 \times {5}^{5} }{ {2}^{6} \times {5}^{6} } \\ \\ = \frac{3 \times3125 }{( {10)}^{6} } \\ \\ = \frac{9375}{1000000} \\ \\ = 0.009375 \\ \\ it \: is \: \: shown \: that \: factors \: of \: denominator \: are \: \: in \: \\ form \: {2}^{n} \times {5}^{m} \\ \\ this \: rational \: number \: have \: terminating \: decimal \: expansion. \\ \\\end{gathered}

4)

1600

15

=

2

6

×5

2

15

=

2

6

×5

3

=

2

6

×5

6

3×5

5

=

(10)

6

3×3125

=

1000000

9375

=0.009375

itisshownthatfactorsofdenominatorarein

form2

n

×5

m

thisrationalnumberhaveterminatingdecimalexpansion.

\begin{gathered}5) \frac{17}{320} \\ \\ \frac{17}{ {2}^{6} \times 5 } it \: is \: \: shown \: that \: factors \: of \: denominator \: are \: \: in \: \\ form \: {2}^{n} \times {5}^{m} \\ \\ this \: rational \: number \: have \: terminating \: decimal \: expansion. \\ \\ \frac{17 \times {(5}^{5} )}{( {2}^{6})( {5}^{6} ) } \\ \\ = \frac{17\times \: 3125}{( {10)}^{6} } \\ \\ = \frac{53125}{1000000} = 0.053125 \\ \\\end{gathered}

5)

320

17

2

6

×5

17

itisshownthatfactorsofdenominatorarein

form2

n

×5

m

thisrationalnumberhaveterminatingdecimalexpansion.

(2

6

)(5

6

)

17×(5

5

)

=

(10)

6

17×3125

=

1000000

53125

=0.053125

\begin{gathered}6) \frac{19}{3125} \\ \\ = \frac{19}{ {5}^{5} } \\ \\ it \: is \: \: shown \: that \: factors \: of \: denominator \: are \: \: in \: \\ form \: {2}^{n} \times {5}^{m} \\ \\ this \: rational \: number \: have \: terminating \: decimal \: expansion. \\ \\ \frac{19 \times {(2}^{5} )}{( {5}^{5})( {2}^{5} ) } \\ \\ = \frac{19 \times \: 32 }{( {10)}^{5} } \\ \\ = \frac{608}{100000} = 0.00608 \\ \\\end{gathered}

6)

3125

19

=

5

5

19

itisshownthatfactorsofdenominatorarein

form2

n

×5

m

this rational number has a terminating decimal expansion.

(5

5

)(2

5

)

19×(2

5

)

=

(10)

5

19×32

=

100000

608

=0.00608

Hope it helps you.

Similar questions