without actual division show that p(x) =4x³+3x²-4x-3 is exactly divisible by (x+1) and (4x+3)
Answers
Answer:
\begin{gathered}x + 1 = 0 \\ x = - 1 \\ putting \: the \: value \: of \: x \\ p( - 1) = 4 {( - 1)}^{3} + 3 {( - 1)}^{2} - \\ 4( - 1) - \ 3 \\ = - 4 + 3 + 4 - 3 \\ = 0 \\ by \: factor \: theorem \\ p( - 1) = 0 \\ hence \:p(x) \: is \: \\ divisible \: by \: (x + 1) \\ \end{gathered}
x+1=0
x=−1
puttingthevalueofx
p(−1)=4(−1)
3
+3(−1)
2
−
4(−1)− 3
=−4+3+4−3
=0
byfactortheorem
p(−1)=0
hencep(x)is
divisibleby(x+1)
\begin{gathered}4x + 3 = 0 \\ x = \frac{ - 3}{4} \\ putting \: value \: of \: x \: \\ p( \frac{ - 3}{4} ) = 4 \times ( - \frac{27}{64} ) + \\ 3 \times \frac{9}{16} + 3 - 3 \\ = \frac{ - 27}{16 } + \frac{27}{16} + 3 - 3 \\ = 0 \\ p(x) = 0 \\ by \: factor \:t heorem \: p(x) \: i s \: \\ divisible \: by \: (4x - 3) \\ \\ hence \: p(x) \: is \: divisible \: by \: \\ (x + 1) \: and \: (4x - 3) \\ - - - - - - - - - - - \\ hope \: it \: helps \: u \: \\ mark \: \: as \: brainliest\end{gathered}
4x+3=0
x=
4
−3
puttingvalueofx
p(
4
−3
)=4×(−
64
27
)+
3×
16
9
+3−3
=
16
−27
+
16
27
+3−3
=0
p(x)=0
byfactortheoremp(x)is
divisibleby(4x−3)
hencep(x)isdivisibleby
(x+1)and(4x−3)
−−−−−−−−−−−
hopeithelpsu
markasbrainliest