without actually calculating the cubes find the value of (a-2b)^3+(2b-3c)^3+(3c-a)^3
Answers
Answer:
3(a-2b)(2b-3c)(3c-a)
Step-by-step explanation:
We know that,
a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
If a + b + c = 0,
⇒ a³ + b³ + c³ - 3abc = 0 × (a²+b²+c²-ab-bc-ca)
⇒ a³ + b³ + c³ - 3abc = 0
⇒ a³ + b³ + c³ = 3abc
Here, the given expression is,
Since, (a-2b) + (2b-3c) + (3c-a) = a - 2b + 2b - 3c + 3c - a = 0
Thus,
Answer:
3(a-2b)(2b-3c)(3c-a)
Step-by-step explanation:
We know that,
a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
If a + b + c = 0,
⇒ a³ + b³ + c³ - 3abc = 0 × (a²+b²+c²-ab-bc-ca)
⇒ a³ + b³ + c³ - 3abc = 0
⇒ a³ + b³ + c³ = 3abc
Here, the given expression is,
(a-2b)^3+(2b-3c)^3+(3c-a)^3(a−2b)
3
+(2b−3c)
3
+(3c−a)
3
Since, (a-2b) + (2b-3c) + (3c-a) = a - 2b + 2b - 3c + 3c - a = 0
Thus,
(a-2b)^3+(2b-3c)^3+(3c-a)^3=3(a-2b)(2b-3c)(3c-a)(a−2b)
3
+(2b−3c)
3
+(3c−a) 3
=3(a−2b)(2b−3c)(3c−a)