Without actually performing the long division, show that
34/6250 will have terminating decimal
expansion. Write decimal expansion also.
Answers
Answer:
Theorem: Let x=
q
p
be a rational number, such that the prime factorisation of q is of the form 2
n
5
m
, where n, m are non-negative integers. Then, x has a decimal expansion which terminates.
(i)
3125
13
Factorise the denominator, we get
3125=5×5×5×5×5=5
5
So, denominator is in form of 5
m
so,
3125
13
is terminating.
(ii)
8
17
Factorise the denominator, we get
8=2×2×2=2
3
So, denominator is in form of 2
n
so,
8
17
is terminating.
(iii)
455
64
Factorise the denominator, we get
455=5×7×13
So, denominator is not in form of 2
n
5
m
so,
455
64
is not terminating.
(iv)
1600
15
Factorise the denominator, we get
1600=2×2×2×2×2×2×5×5=2
6
5
2
So, denominator is in form of 2
n
5
m
so,
1600
15
is terminating.
(v)
343
29
Factorise the denominator, we get
343=7×7×7=7
3
So, denominator is not in form of 2
n
5
m
so,
343
29
is not terminating.
(vi)
2
3
5
2
23
Here, the denominator is in form of 2
n
5
m