Without cubing simplify the following
(a²-b²)³ + (b²-c²)³ + (c²-a²)³.
Answers
Answered by
0
Step-by-step explanation:
(a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3(a2−b2)3+(b2−c2)3+(c2−a2)3(a−b)3+(b−c)3+(c−a)3
Let in numerator
x=(a2−b2),y=(b2−c2),z=(c2−a2)x=(a2−b2),y=(b2−c2),z=(c2−a2)
⟹x+y+z=0(1)(1)⟹x+y+z=0
We know, (x+y+z)3=x3+y3+z3+3(x+y+z)(xy+yz+zx)−3xyz(x+y+z)3=x3+y3+z3+3(x+y+z)(xy+yz+zx)−3xyz
0=x3+y3+z3+3(0)(xy+yz+zx)−3xyz0=x3+y3+z3+3(0)(xy+yz+zx)−3xyz
Answered by
2
Answer:
Attachments:

Similar questions
Physics,
2 months ago
Biology,
2 months ago
India Languages,
4 months ago
Science,
11 months ago
Math,
11 months ago