without expanding the determinant, show that (a-b) is a factor of the given determinant
Answers
Given: The determinant | 1 a a^2 |
| 1 b b^2 |
| 1 c c^2 |
To find: Whether (a - b) is a factor of the given determinant.
Solution:
- Now the given determinant is: | 1 a a^2 |
| 1 b b^2 |
| 1 c c^2 |
- So in this, we need to make some transformations.
- So first:
- R1 ---> R1 - R2 and R2 ---> R2 - R3
| 1 a a^2 | | 0 a-b a^2 - b^2 |
| 1 b b^2 | -------> | 0 b-c b^2 - c^2 |
| 1 c c^2 | | 1 c c^2 |
- Now expanding the determinant, from R3, we get:
1 { ( a-b )( b^2 - c^2 ) - ( b-c )( a^2 - b^2 ) }
- Using the formula, a^2 - b^2 = (a - b)(a + b)
1 { ( a-b )( b^2 - c^2 ) - ( b-c )( a-b )( a+b ) }
- Taking (a - b) common from both terms, we get:
( a - b ) { ( b^2 - c^2 ) - ( b-c )( a+b )
Answer:
So in solution part we proved that (a-b) is a factor of the given determinant.