Math, asked by gk9104702213, 8 months ago

Without finding the zeroes alpha and beta of the polynomial p(x) = x^2 - 5x + 6, find the values of following 1/alpha + 1/beta

Answers

Answered by nisha382
102

Answer:

\huge\bold\red{Answer}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Given:-

  • \bold{p(x)=x^2-5x+6}
  • \bold\alpha and \beta are the zeroes of p(x)

To find:-

  • \bold \ value \ of \frac{1}{ \alpha } + \frac{1}{ \beta }

Solution:-

\bold{Given,p(x)=x^2-5x+6}

\bold \ Here \ \alpha + \beta =-b/a

\bold{=-(-5)/1}

\bold{=5}

\bold \alpha × \beta =c/a

\bold{=6/1}

\bold{=6}

\bold \ now \frac{1}{ \alpha } + \frac{1}{ \beta }=\frac{ \ alpha + \ beta }{ \alpha \beta }

\bold=\mathsf{ \dfrac{5}{6}}

\bold{VALUE\:OF\:THE\: EXPRESSION\:IS\:5/6}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\huge\bold\green{Hope\:this\:help\:you}

Answered by aishabhata786
11

Answer:

5/6

Step-by-step explanation:

20 thanks + follow = inbox

Similar questions