Without using the trigonometric tables, find the values of :
i) sin 45° cos 30° - cos 45° sin 30°
Answers
Sin 45°=1/√2
Cos45°=1/√2
sin30°=1/2
Cos30°=√3/2
Therefore
=Sin45°×cos30°+cos45°×sin30°
=1\√2 × √3\2 + 1\√2 × 1\2
=√3\2√2 + 1\2√2
=√3 +1\2√2
Therefore answer is √3+1\2√2
Hope it's helpful to you
Answer:
Sin 45°=1/√2
Sin 45°=1/√2Cos45°=1/√2
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2=√3\2√2 + 1\2√2
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2=√3\2√2 + 1\2√2=√3 +1\2√2
Sin 45°=1/√2Cos45°=1/√2sin30°=1/2Cos30°=√3/2Therefore=Sin45°×cos30°+cos45°×sin30°=1\√2 × √3\2 + 1\√2 × 1\2=√3\2√2 + 1\2√2=√3 +1\2√2Therefore answer is √3+1\2√2