Math, asked by siddiquizainab74, 9 months ago

without using trigonometric table, evaluate
sec11/cosec79​

Answers

Answered by ItzAditt007
7

AmswEr:-

The Required Answer Is 1.

ExplanaTion:-

To Evaluate:-

  • \tt\dfrac{sec\ 11\degree}{cosec\ 79\degree}.

ID Used:-

\tt\leadsto sec \theta = cosec(90 -  \theta).

By Using Above ID:-

\tt\mapsto \dfrac{ \sec \: 11 \degree}{cosec \:79  \degree} .

 \tt =  \dfrac{cosec(90 - 11) \degree}{cosec\:79 \degree} \:  \:  \rm(by \: using \: id).

 \tt =  \cancel \dfrac{cosec \: 79 \degree}{cosec \: 79 \degree} .

 \large\boxed{ \bf  = 1.}

Therefore \bf\dfrac{sec\ 11\degree}{cosec\ 79\degree} = 1

More related trigonometric IDs:-

\tt\longrightarrow \cos\theta = \sin(90-\theta).

\tt\longrightarrow \sin\theta = \cos(90-\theta).

\tt\longrightarrow \tan\theta = \cot(90-\theta).

\tt\longrightarrow \cot\theta = \tan(90-\theta).

\tt\longrightarrow cosec\theta = \sec(90-\theta).

Answered by Anonymous
43

{ \bf{ \underline{Question}}}

Without using trigonometric table, evaluate

{ \mathtt{ \dfrac{sec11}{cosec79}}}

{ \bf{ \underline{Answer}}}

{ \text{By \: using \: identity }}

{ \text{sec }\theta} = { \text {cosec (90 - } \theta})

 \implies{ \mathtt{ \dfrac{sec11}{cosec79}}}

 \implies { \mathtt{ \dfrac{sec(90 - 79)}{cosec79}}}

( \therefore{ \text{sec(90 - }} \theta).{ \text{cosec}} \theta)

 \implies{ \mathtt{  \dfrac{cosec79}{cosec79}}}

 \implies{ \text{1}}

SOME OTHER TRIGNOMETRIC IDENTITIES :-

  • csc(θ) = csc(θ) = 1/sin(θ)

  • sec(θ) = sec(θ) = 1/cos(θ)

  • cot(θ) = cot(θ) = 1/tan(θ)

  • tan(θ) = tan(θ) = sin(θ)/cos(θ)

  • cot(θ) = cot(θ) = cos(θ)/sin(θ)

__________________________________________

Similar questions