Math, asked by amintinafiaangani, 1 year ago

Without using trigonometric tables prove that : tan 1 tan 11 tan 21 tan 69 tan 79 tan 89=1

Answers

Answered by ARoy
66
tan1°tan11°tan21°tan69°tan79°tan89°
=tan1°tan11°tan21°tan(90°-21°)tan(90°-11°)tan(90°-1°)
=tan1°tan11°tan21°cot21°cot11°cot1°
=tan1°tan11°tan21°(1/tan21°)(1/tan11°)(1/tan1°)
=1 (Proved)
Answered by harendrachoubay
9

\tan 1 \tan 11 \tan 21 \tan 69 \tan 79 \tan 89=1, proved.

Step-by-step explanation:

Prove that,  \tan 1 \tan 11 \tan 21 \tan 69 \tan 79 \tan 89=1.

L.H.S.=\tan 1 \tan 11 \tan 21 \tan 69 \tan 79 \tan 89

=\tan 1 \tan 11 \tan 21 \tan (90-21) \tan (90-11) \tan (90-1)

Since, \cot A=\tan (90-A)

=\tan 1.\tan 11.\tan 21.\cot 21.\cot 11.\cot 1

=(\tan 1.\cot 1).(\tan 11.\cot 11).(\tan 21.\cot 21)

Using trigonometric formula,

\tan A.\cot A=1

=(1).(1).(1)

= 1

= R.H.S., proved,

Hence, \tan 1 \tan 11 \tan 21 \tan 69 \tan 79 \tan 89=1, proved.

Similar questions