Physics, asked by Loiua45, 1 year ago

Work of a substance 1 .2 electron - is volt. Find out the wavelength 450 nanometer light of the incident light - the detrimental potential for electrical emissions. ( h = 6 6x10 joule - second)

Answers

Answered by Swarnimkumar22
6
\bold{\huge{\underline{Solution-}}}


\bold{\huge{Step-1}}



 \bf \: First \:  notes \:  the \:  figures \:  given \:   in \:  the \:   \\ \bf question \:  W \:  = 1. 2 \:  \:  electrons - volts, \:   \\ \bf \lambda \:   = 450 \:  nanometers = 450 \:  \times  \: 10 {}^{ - 9}   \: meters, v _{0} =? \:




\bold{\huge{Step-2}}



 \bf \: Efficiency  \: of  \: light \:  photon



 \huge  \bf \: useing \: formula \:  \:  \\  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \boxed  {{ \bf \: E} = hv   \:  \:  \implies \:  \frac{hv}{ \lambda} }}





 \bf \: Now,  \:  Putting  \: t he  \: above \:  Values \:  I n \:  Formula





 \bf \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{6.6 \times  {10}^{ - 34} \times 3 \times  {10}^{8}  }{450 \times  {10}^{ - 9} }




 \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  4.4 \times  {10}^{ - 19}  \:   _{ \boxed{ \bf \: jule}}






 \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{4.4 \times  {10}^{ -1 9} }{1.6 \times  {10}^{ - 19} }  \\  \\  \:  \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2.75 \:  _{ \boxed {\:  \bf \: e.v}}







\bold{\huge{Step-3}}





 \bf \: Maximum  \: kinetic \:  energy  \: of \:  emitted  \: light \:  electrons






 \underline{ \bf \: Now,  \: Using \:  Formula}




 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed { {E _{K} } = hv - w}




Lets, Put the above values





 \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 2.75 - 1.2 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1.55  \:  \:  \:  \:  \: _{ \boxed{electron \: volt}}







\bold{\huge{Step-4}}





 \underline{ \bf \: From \:  the  \: Formula} \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{  \: EK = eVo}





 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: Vo =  \frac{Ek}{e}  \\  \\  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \bf \:  \frac{1.55 \: e  V}{e}  = 1.55 \: volt
Answered by purushottamkumar67
0

HIII.....

GOOD MORNING:-)

FIND YOUR ANSWER IN THE ATTACHMENT I GAVE

Attachments:
Similar questions