Write 1 +✓-3i in polar form
Answers
Answered by
2
Answer:
z=1+√-3i
|z|=√(1)^2+(√-3)^2=√1+3=√4=2
Step-by-step explanation:
2(cosπ/3+isinπ/3)
Answered by
4
Answer:
z = 1 - √3 i
|z| = r = √(1² + √(-3)²)
⇒ r = √(1 + 3) = 2
r cos ∅ = 1, r sin ∅ = -√3
cos ∅ = 1/2, sin ∅ = -√3/2
Now, ∅ lies in fourth quadrant.
So, ∅ = -π/3
Polar form : r(cos ∅ + i sin ∅)
Hence, 2(cos (-π/3) + i sin (-π/3))
SOME IMPORTANT FORMULAS :
- r = √(x² + y²)
- cos ∅ = x/r
- sin ∅ = y/r
- i^{4k} = 1
- i^{4k + 1} = i
- i^{4k + 2} = - 1
- i^{4k + 3} = - i
- z_1 + z_2 = (a + c) + i (b + d)
- z_1 × z_2 = (ac - bd) + i (ad + bc)
Similar questions